Skip to main content

Advertisement

Log in

Taste Sensing Systems Influencing Metabolic Consequences

  • Oral Disease and Nutrition (F Nishimura, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Recent Findings

The taste information contributes to evaluate the quality and nutritional value of food before it is ingested, and thus, is essential for maintaining nutritive homeostasis within the body. Recent studies revealed that taste sensitivity is modulated by humoral factors such as hormones. Angiotensin II is a key hormone regulating sodium and water balance. Investigations of its involvement in the taste system revealed that angiotensin II suppresses the gustatory NaCl responses (amiloride-sensitive component) and enhances sweet taste sensitivity without affecting umami, sour, and bitter responses in mice.

Summary

These results suggest that taste modulation by angiotensin II may play important roles in maintaining electrolyte and glucose homeostasis.

Purpose of Review

This review focuses on the molecular mechanisms of salty taste perception and its modulation through the angiotensin II signaling to work out novel strategies to control food intake influencing metabolic consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AngII:

Angiotensin II

AT1 (AT2):

Angiotensin II receptor type 1 (type 2)

CB1:

Cannabinoid receptor 1

CT:

Chorda tympani

ENaC:

Epithelial sodium channel

KCl:

Potassium chloride

KO:

Knockout

NaCl:

Sodium chloride

Pkd2L1:

Polycystic kidney disease 2-like 1

T1r3:

Taste receptor family 1 member 3

Trpm5:

Transient receptor potential cation channel subfamily M member 5

Trpv1:

Transient receptor potential vanilloid 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lindemann B. Receptors and transduction in taste. Nature. 2001;413(6852):219–25.

    Article  CAS  PubMed  Google Scholar 

  2. Chandrashekar J, et al. The receptors and cells for mammalian taste. Nature. 2006;444(7117):288–94.

    Article  CAS  PubMed  Google Scholar 

  3. Shigemura N, Ninomiya Y. Recent advances in molecular mechanisms of taste signaling and modifying. Int Rev Cell Mol Biol. 2016;323:71–106.

    Article  PubMed  Google Scholar 

  4. Richter CP. Increased salt appetite in adrenalectomized rats. Am J Phys. 1936;115:155–61.

    CAS  Google Scholar 

  5. Ten S, New M, Maclaren N. Clinical review 130: Addison’s disease 2001. J Clin Endocrinol Metab. 2001;86(7):2909–22.

    CAS  PubMed  Google Scholar 

  6. Madias NE, Adrogue HJ. Hypo–hypernatraemia: disorders of water balance. In: Davidson AM, Cameron JS, Grünfeld J-P et al, editors. Oxford textbook of clinical nephrology, 3rd edn. Oxford University Press; 2005. p. 213–40.

  7. He FJ, Burnier M, Macgregor GA. Nutrition in cardiovascular disease: salt in hypertension and heart failure. Eur Heart J. 2011;32(24):3073–80.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao D, et al. Dietary factors associated with hypertension. Nat Rev Cardiol. 2011;8(8):456–65.

    Article  CAS  PubMed  Google Scholar 

  9. He J, et al. Premature deaths attributable to blood pressure in China: a prospective cohort study. Lancet. 2009;374(9703):1765–72.

    Article  PubMed  Google Scholar 

  10. Murray RG. The ultrastructure of taste buds. In: Friedmann I, editor. The ultrastructure of sensory organs. Amsterdam: North Holland; 1973. p. 1–81.

    Google Scholar 

  11. Bartel DL, et al. Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. J Comp Neurol. 2006;497(1):1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lawton DM, et al. Localization of the glutamate-aspartate transporter, GLAST, in rat taste buds. Eur J Neurosci. 2000;12(9):3163–71.

    Article  CAS  PubMed  Google Scholar 

  13. Kitagawa M, et al. Molecular genetic identification of a candidate receptor gene for sweet taste. Biochem Biophys Res Commun. 2001;283(1):236–42.

    Article  CAS  PubMed  Google Scholar 

  14. Montmayeur JP, et al. A candidate taste receptor gene near a sweet taste locus. Nat Neurosci. 2001;4(5):492–8.

    CAS  PubMed  Google Scholar 

  15. Max M, et al. Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. Nat Genet. 2001;28(1):58–63.

    CAS  PubMed  Google Scholar 

  16. Sainz E, et al. Identification of a novel member of the T1R family of putative taste receptors. J Neurochem. 2001;77(3):896–903.

    Article  CAS  PubMed  Google Scholar 

  17. Nelson G, et al. Mammalian sweet taste receptors. Cell. 2001;106(3):381–90.

    Article  CAS  PubMed  Google Scholar 

  18. Bachmanov AA, et al. Positional cloning of the mouse saccharin preference (sac) locus. Chem Senses. 2001;26(7):925–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chandrashekar J, et al. T2Rs function as bitter taste receptors. Cell. 2000;100(6):703–11.

    Article  CAS  PubMed  Google Scholar 

  20. McLaughlin SK, McKinnon PJ, Margolskee RF. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature. 1992;357(6379):563–9.

    Article  CAS  PubMed  Google Scholar 

  21. Miyoshi MA, Abe K, Emori Y. IP(3) receptor type 3 and PLCbeta2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells. Chem Senses. 2001;26(3):259–65.

    Article  CAS  PubMed  Google Scholar 

  22. Clapp TR, et al. Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction. BMC Neurosci. 2001;2:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pérez CA, et al. A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci. 2002;5(11):1169–76.

    Article  PubMed  Google Scholar 

  24. Talavera K, et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature. 2005;438(7070):1022–5.

    Article  CAS  PubMed  Google Scholar 

  25. Taruno A, et al. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature. 2013;495(7440):223–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang R, et al. Taste cells with synapses in rat circumvallate papillae display SNAP-25-like immunoreactivity. J Comp Neurol. 2000;424(2):205–15.

    Article  CAS  PubMed  Google Scholar 

  27. Clapp TR, et al. Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biol. 2006;4:7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Iwanaga T. Immunohistochemical localization of protein gene product 9.5 (PGP 9.5) in sensory paraneurons of the rat. Biomed Res. 1992;13(3):225–30.

    Article  CAS  Google Scholar 

  29. Tamamaki N, et al. Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol. 2003;467(1):60–79.

    Article  CAS  PubMed  Google Scholar 

  30. Nelson GM, Finger TE. Immunolocalization of different forms of neural cell adhesion molecule (NCAM) in rat taste buds. J Comp Neurol. 1993;336(4):507–16.

    Article  CAS  PubMed  Google Scholar 

  31. Huang YJ, et al. Mouse taste buds use serotonin as a neurotransmitter. J Neurosci. 2005;25(4):843–7.

    Article  CAS  PubMed  Google Scholar 

  32. Lopez-Jimenez ND, et al. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J Neurochem. 2006;98(1):68–77.

    Article  CAS  Google Scholar 

  33. Ishimaru Y, et al. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A. 2006;103(33):12569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Horio N, et al. Sour taste responses in mice lacking PKD channels. PLoS One. 2011;6(5):e20007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Finger TE, Simon SA. Cell biology of taste epithelium. In: Finger TE, Silver WL, Restrepo D, editors. The neurobiology of taste and smell. New York: Wiley-Liss; 2000. p. 287–314.

    Google Scholar 

  36. Miura H, et al. Shh and Ptc are associated with taste bud maintenance in the adult mouse. Mech Dev. 2001;106(1–2):143–5.

    Article  CAS  PubMed  Google Scholar 

  37. Hall JM, Bell ML, Finger TE. Disruption of sonic hedgehog signaling alters growth and patterning of lingual taste papillae. Dev Biol. 2003;255(2):263–77.

    Article  CAS  PubMed  Google Scholar 

  38. Seta Y, et al. The bHLH transcription factors, Hes6 and Mash1, are expressed in distinct subsets of cells within adult mouse taste buds. Arch Histol Cytol. 2006;69(3):189–98.

    Article  CAS  PubMed  Google Scholar 

  39. Nakayama A, et al. Expression of the basal cell markers of taste buds in the anterior tongue and soft palate of the mouse embryo. J Comp Neurol. 2008;509(2):211–24.

    Article  PubMed  Google Scholar 

  40. Ren W, et al. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc Natl Acad Sci U S A. 2014;111(46):16401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schiffman SS, Lockhead E, Maes FW. Amiloride reduces the taste intensity of Na+ and Li+ salts and sweeteners. Proc Natl Acad Sci U S A. 1983;80(19):6136–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Heck GL, Mierson S, DeSimone JA. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science. 1984;223(4634):403–5.

    Article  CAS  PubMed  Google Scholar 

  43. Jakinovich Jr W. Stimulation of gerbil’s gustatory receptors by methyl glycopyranosides. Chem Senses. 1985;10(4):591–604.

    Article  CAS  Google Scholar 

  44. Simon SA, Robb R, Garvin JL. Epithelial responses of rabbit tongues and their involvement in taste transduction. Am J Phys. 1986;251(3):R598–608.

    CAS  Google Scholar 

  45. Herness MS. Effect of amiloride on bulk flow and iontophoretic taste stimuli in the hamster. J Comp Physiol A. 1987;160(2):281–8.

    Article  CAS  PubMed  Google Scholar 

  46. Ninomiya Y, Sako N, Funakoshi M. Strain differences in amiloride inhibition of NaCl responses in mice, Mus musculus. J Comp Physiol A. 1989;166(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  47. Hellekant G, Ninomiya Y. On the taste of umami in chimpanzee. Physiol Behav. 1991;49(5):927–34.

    Article  CAS  PubMed  Google Scholar 

  48. Yoshida R, et al. NaCl responsive taste cells in the mouse fungiform taste buds. Neuroscience. 2009;159(2):795–803.

    Article  CAS  PubMed  Google Scholar 

  49. Ninomiya Y, Funakoshi M. Amiloride inhibition of responses of rat single chorda tympani fibers to chemical and electrical tongue stimulations. Brain Res. 1988;451(1–2):319–25.

    Article  CAS  PubMed  Google Scholar 

  50. Ninomiya Y. Reinnervation of cross-regenerated gustatory nerve fibers into amiloride-sensitive and amiloride-insensitive taste receptor cells. Proc Natl Acad Sci U S A. 1998;95(9):5347–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Formaker BK, Hill DL. Lack of amiloride sensitivity in SHR and WKY glossopharyngeal taste responses to NaCl. Physiol Behav. 1991;50:765–9.

    Article  CAS  PubMed  Google Scholar 

  52. Yasumatsu K, et al. Recovery of amiloride-sensitive neural coding during regeneration of the gustatory nerve: behavioral-neural correlation of salt taste discrimination. J Neurosci. 2003;23(10):4362–8.

    CAS  PubMed  Google Scholar 

  53. Lingueglia E, et al. Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett. 1993;318:95–9.

    Article  CAS  PubMed  Google Scholar 

  54. Kretz O, et al. Differential expression of RNA and protein of the three pore-forming subunits of the amiloride-sensitive epithelial sodium channel in taste buds of the rat. J Histochem Cytochem. 1999;47(1):51–64.

    Article  CAS  PubMed  Google Scholar 

  55. Lin W, et al. Epithelial Na+ channel subunits in rat taste cells: localization and regulation by aldosterone. J Comp Neurol. 1999;405(3):406–20.

    Article  CAS  PubMed  Google Scholar 

  56. Shigemura N, et al. Expression of amiloride-sensitive epithelial sodium channels in mouse taste cells after chorda tympani nerve crush. Chem Senses. 2005;30(6):531–8.

    Article  CAS  PubMed  Google Scholar 

  57. Chandrashekar J, et al. The cells and peripheral representation of sodium taste in mice. Nature. 2010;464(7286):297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shigemura N, et al. Amiloride-sensitive NaCl taste responses are associated with genetic variation of ENaC alpha-subunit in mice. Am J Physiol Regul Integr Comp Physiol. 2008;294(1):R66–75.

    Article  CAS  PubMed  Google Scholar 

  59. Ambrosius WT, et al. Genetic variants in the epithelial sodium channel in relation to aldosterone and potassium excretion and risk for hypertension. Hypertension. 1999;34:631–7.

    Article  CAS  PubMed  Google Scholar 

  60. Noh H, et al. Salty taste acuity is affected by the joint action of αENaC A663T gene polymorphism and available zinc intake in young women. Nutrients. 2013;5(12):4950–63.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Huque T, et al. Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue. PLoS One. 2009;4(10):e7347.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lyall V, et al. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J Physiol. 2004;558(1):147–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oka Y, et al. High salt recruits aversive taste pathways. Nature. 2013;494(7438):472–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Buggy J, Fisher AN. Evidence for a dual central role for angiotensin in water and sodium intake. Nature. 1974;250(5469):733–5.

    Article  CAS  PubMed  Google Scholar 

  65. Avrith DB, Fitzsimons JT. Increased sodium appetite in the rat induced by intracranial administration of components of the renin-angiotensin system. J Physiol. 1980;301:349–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Avrith DB, Wiselka MJ, Fitzsimons JT. Increased sodium appetite in adrenalectomized or hypophysectomized rats after intracranial injection of renin or angiotensin II. J Endocrinol. 1980;87:109–12.

    Article  CAS  PubMed  Google Scholar 

  67. Fitts DA, et al. Intravenous angiotensin and salt appetite in rats. Appetite. 2007;48(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  68. Dalhouse AD, et al. Angiotensin and salt appetite: physiological amounts of angiotensin given peripherally increase salt appetite in the rat. Behav Neurosci. 1986;100(4):597–602.

    Article  CAS  PubMed  Google Scholar 

  69. Schoorlemmer GH, Johnson AK, Thunhorst RL. Circulating angiotensin II mediates sodium appetite in adrenalectomized rats. Am J Phys. 2001;281(3):R723–9.

    CAS  Google Scholar 

  70. Thunhorst RL, Fitts DA. Peripheral angiotensin causes salt appetite in rats. Am J Phys. 1994;267(1):R171–7.

    CAS  Google Scholar 

  71. de Gasparo M, et al. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52(3):415–72.

    PubMed  Google Scholar 

  72. •• Shigemura N, et al. Angiotensin II modulates salty and sweet taste sensitivities. J Neurosci. 2013;33(15):6267–77. This manuscript represents the first description of salty and sweet taste modulation by angiotensin II signaling in the peripheral taste organs

    Article  CAS  PubMed  Google Scholar 

  73. Kinugawa K, et al. Effects of a nonpeptide angiotensin II receptor antagonist (CV-11974) on [Ca2+]i and cell motion in cultured ventricular myocytes. Eur J Pharmacol. 1993;235(2–3):313–6.

    Article  CAS  PubMed  Google Scholar 

  74. Murata Y, et al. Gurmarin suppression of licking responses to sweetener-quinine mixtures in C57BL mice. Chem Senses. 2003;28(3):237–43.

    Article  CAS  PubMed  Google Scholar 

  75. Shigemura N, et al. Leptin modulates behavioral responses to sweet substances by influencing peripheral taste structures. Endocrinology. 2004;145(2):839–47.

    Article  CAS  PubMed  Google Scholar 

  76. Lingueglia E, et al. Different homologous subunits of the amiloride-sensitive Na+ channel are differently regulated by aldosterone. J Biol Chem. 1994;269(19):13736–9.

    CAS  PubMed  Google Scholar 

  77. Loffing J, et al. Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: possible role of SGK. Am J Physiol Renal Physiol. 2001;280(4):F675–82.

    CAS  PubMed  Google Scholar 

  78. Jamshidi N, Taylor DA. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol. 2001;134(6):1151–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cota D, et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest. 2003;112(3):423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. • Yoshida R, et al. Endocannabinoids selectively enhance sweet taste. Proc Natl Acad Sci U S A. 2010;107(2):935–9. This manuscript represents the first description of sweet taste enhancing effect by endocannabinoid signaling in the peripheral taste organs

    Article  CAS  PubMed  Google Scholar 

  81. Rozenfeld R, et al. AT1R-CB1R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II. EMBO J. 2011;30(12):2350–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Turu G, et al. Paracrine transactivation of the CB1 cannabinoid receptor by AT1 angiotensin and other Gq/11 protein-coupled receptors. J Biol Chem. 2009;284(25):16914–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ledent C, et al. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science. 1999;283(5400):401–4.

    Article  CAS  PubMed  Google Scholar 

  84. Araki K, et al. Telmisartan prevents obesity and increases the expression of uncoupling protein 1 in diet-induced obese mice. Hypertension. 2006;48(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  85. McMurray JJ, et al. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362(16):1477–90.

    Article  CAS  PubMed  Google Scholar 

  86. Fallis N, Lasagna L, Tetreault L. Gustatory thresholds in patients with hypertension. Nature. 1962;196:74–5.

    Article  Google Scholar 

  87. Mattes RD. The taste for salt in humans. Am J Clin Nutr. 1997;65(2):692S–7S.

    CAS  PubMed  Google Scholar 

  88. Boyd I. Captopril-induced taste disturbance. Lancet. 1993;342(8866):304–5.

    Article  CAS  PubMed  Google Scholar 

  89. McNeil JJ, et al. Taste loss associated with captopril treatment. Br Med J. 1979;2(6204):1555–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gradman AH, et al. A randomized, placebo-controlled, double-blind, parallel study of various doses of losartan potassium compared with enalapril maleate in patients with essential hypertension. Hypertension. 1995;25(6):1345–50.

    Article  CAS  PubMed  Google Scholar 

  91. Schlienger RG, Saxer M, Haefeli WE. Reversible ageusia associated with losartan. Lancet. 1996;347(8999):471–2.

    Article  CAS  PubMed  Google Scholar 

  92. Tsuruoka S, et al. Angiotensin II receptor blocker-induces blunted taste sensitivity: comparison of candesartan and valsartan. Br J Clin Pharmacol. 2005;60(2):204–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Grants-in-Aid 24659828 and 15K11044 (N.S.) for Scientific Research from the Ministry of Education, Culture, Sports and Science, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriatsu Shigemura.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Oral Disease and Nutrition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shigemura, N. Taste Sensing Systems Influencing Metabolic Consequences. Curr Oral Health Rep 4, 79–86 (2017). https://doi.org/10.1007/s40496-017-0128-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-017-0128-0

Keywords

Navigation