Skip to main content

Advertisement

Log in

Insulin Function in Peripheral Taste Organ Homeostasis

  • Oral Disease and Nutrition (F Nishimura, Section Editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Taste is the sensory system primarily devoted to the selection of what we eat. Various internal factors are likely involved in the modulation of taste sensitivity or homeostasis in the context of one’s general nutritional condition. For ameliorating or preventing lifestyle-related diseases, it is important to understand how our taste system is maintained and disrupted. This review focuses on insulin, the most potent anabolic agent in our body and a possible modulator of taste sensation, in the peripheral taste system.

Recent Findings

The insulin receptor is expressed in taste buds and taste progenitor/stem cells. Insulin expression itself is also reported in taste buds. Recent studies suggest that insulin signaling might contribute to the regulation of taste cell generation.

Summary

Insulin in blood circulation or in taste buds might influence taste cell turnover and certain taste sensitivities. Hyperinsulinemia is one possible cause of taste disorders frequently observed in diabetes patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chandrashekar J, Hoon MA, Ryba NJP, Zuker CS. The receptors and cells for mammalian taste. Nature. 2006. https://doi.org/10.1038/nature05401.

  2. Takai S, Yoshida R, Shigemura N, Ninomiya Y. Peptide signaling in taste transduction. In: Chemosens. Transduct: Elsevier; 2016. p. 299–317.

    Google Scholar 

  3. Yoshida R, Ninomiya Y. New insights into the signal transmission from taste cells to gustatory nerve fibers. Int Rev Cell Mol Biol. 2010;279:101–34.

    Article  CAS  PubMed  Google Scholar 

  4. Roper SD, Chaudhari N. Taste buds: cells, signals and synapses. Nat Rev Neurosci. 2017. https://doi.org/10.1038/nrn.2017.68.

  5. Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Tränkner D, et al. The cells and logic for mammalian sour taste detection. Nature. 2006;442:934–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A. 2006;103:12569–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Teng B, Wilson CE, Tu Y-H, Joshi NR, Kinnamon SC, Liman Correspondence ER, et al. Cellular and neural responses to sour stimuli require the proton channel Otop1 article cellular and neural responses to sour stimuli require the Proton Channel Otop1. Curr Biol. 2019;29:3647–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roper SD. Taste buds as peripheral chemosensory processors. Semin Cell Dev Biol. 2013. https://doi.org/10.1016/j.semcdb.2012.12.002.

  9. Chaudhari N, Roper SD (2010) The cell biology of taste 190:285–296.

  10. Ichimori Y, Ueda K, Okada H, Honma S, Wakisaka S. Histochemical changes and apoptosis in degenerating taste buds of the rat circumvallate papilla. Arch Histol Cytol. 2009;72:91–100.

    Article  PubMed  Google Scholar 

  11. Miura H, Scott JK, Harada S, Barlow LA. Sonic hedgehog -expressing basal cells are general post-mitotic precursors of functional taste receptor cells. Dev Dyn. 2014;243:1286–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ohmoto M, Ren W, Nishiguchi Y, Hirota J, Jiang P, Matsumoto I. Genetic lineage tracing in taste tissues using Sox2-CreERT2 strain. Chem Senses. 2017;42:547–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tanaka T, Komai Y, Tokuyama Y, Yanai H, Ohe S, Okazaki K, et al. Identification of stem cells that maintain and regenerate lingual keratinized epithelial cells. Nat Cell Biol. 2013;15:511–8.

    Article  CAS  PubMed  Google Scholar 

  14. Beidler LM, Smallman RL. Renewal of cells within taste buds. J Cell Biol. 1965;27:263–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hamamichi R, Asano-Miyoshi M, Emori Y. Taste bud contains both short-lived and long-lived cell populations. Neuroscience. 2006;141:2129–38.

    Article  CAS  PubMed  Google Scholar 

  16. Perea-Martinez I, Nagai T, Chaudhari N. Functional cell types in taste buds have distinct longevities. PLoS One. 2013;8:e53399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yee KK, Li Y, Redding KM, Iwatsuki K, Margolskee RF, Jiang P. Lgr5-EGFP Marks taste bud stem/progenitor cells in posterior tongue. Stem Cells. 2013;31:992–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ren W, Lewandowski BC, Watson J, Aihara E, Iwatsuki K, Bachmanov AA, et al. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc Natl Acad Sci. 2014. https://doi.org/10.1073/pnas.1409064111.

  19. Zhou Y, Liu H-X, Mistretta CM. Bone morphogenetic proteins and noggin: inhibiting and inducing fungiform taste papilla development. Dev Biol. 2006;297:198–213.

    Article  CAS  PubMed  Google Scholar 

  20. Liebl DJ, Mbiene J-P, Parada LF. NT4/5 mutant mice have deficiency in gustatory papillae and taste bud formation. Dev Biol. 1999;213:378–89.

    Article  CAS  PubMed  Google Scholar 

  21. Petersen CI, Jheon AH, Mostowfi P, Charles C, Ching S, Thirumangalathu S, et al. FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size. PLoS Genet. 2011;7:e1002098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Biggs BT, Tang T, Krimm RF. Insulin-like growth factors are expressed in the taste system, but do not maintain adult taste buds. PLoS One. 2016. https://doi.org/10.1371/journal.pone.0148315.

  23. Lu WJ, Mann RK, Nguyen A, Bi T, Silverstein M, Tang JY, et al. Neuronal delivery of hedgehog directs spatial patterning of taste organ regeneration. Proc Natl Acad Sci U S A. 2017;115:E200–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Iwatsuki K, Liu H-X, Gronder A, Singer MA, Lane TF, Grosschedl R, et al. Wnt signaling interacts with Shh to regulate taste papilla development. Proc Natl Acad Sci. 2007;104:2253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806.

    Article  CAS  PubMed  Google Scholar 

  26. Baquero AF, Gilbertson TA. Insulin activates epithelial sodium channel (ENaC) via phosphoinositide 3-kinase in mammalian taste receptor cells. Am J Physiol Physiol. 2011;300:C860–71.

    Article  CAS  Google Scholar 

  27. Heck GL, Mierson S, Desimone JA. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science. 1984;223:403–5.

    Article  CAS  PubMed  Google Scholar 

  28. Blazer-Yost BL, Liu X, Helman SI. Hormonal regulation of eNaCs: insulin and aldosterone. Am J Phys Cell Phys. 1998. https://doi.org/10.1152/ajpcell.1998.274.5.c1373.

  29. Wang J, Barbry P, Maiyar AC, Rozansky DJ, Bhargava A, Leong M, et al. SGK integrates insulin and mineralocorticoid regulation of epithelial sodium transport. Am J Physiol Ren Physiol. 2001. https://doi.org/10.1152/ajprenal.2001.280.2.f303.

  30. • Doyle ME, Fiori JL, Gonzalez Mariscal I, Liu Q-R, Goodstein E, Yang H, et al. Insulin is transcribed and translated in mammalian taste bud cells. Endocrinology. 2018;159:3331–9. Firstly discovered insulin production in oral tissue in mice and human, however they did not mentioned about its function.

  31. Calvo SSC, Egan JM. The endocrinology of taste receptors. Nat Rev Endocrinol. 2015;11:213–27. https://doi.org/10.1038/nrendo.2015.7.

    Article  CAS  PubMed  Google Scholar 

  32. Shin Y-K, Martin B, Kim W, et al. Ghrelin is produced in taste cells and ghrelin receptor null mice show reduced taste responsivity to salty (NaCl) and sour (citric acid) tastants. PLoS One. 2010;5:e12729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Elson AET, Dotson CD, Egan JM, Munger SD. Glucagon signaling modulates sweet taste responsiveness. FASEB J. 2010. https://doi.org/10.1096/fj.10-158105.

  34. Yee KK, Sukumaran SK, Kotha R, Gilbertson TA, Margolskee RF. Glucose transporters and ATP-gated K+ (KATP) metabolic sensors are present in type 1 taste receptor 3 (T1r3)-expressing taste cells. Proc Natl Acad Sci U S A. 2011;108:5431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shin YK, Martin B, Golden E, Dotson CD, Maudsley S, Kim W, et al. Modulation of taste sensitivity by GLP-1 signaling. J Neurochem. 2008;106:455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. •• Takai S, Watanabe Y, Sanematsu K, Yoshida R, Margolskee RF, Jiang P, et al. Effects of insulin signaling on mouse taste cell proliferation. PLoS One. 2019;14:e0225190. Proved that insulin from circulation (or within taste tissue) could make impact on taste cell differentiation/proliferation with using newly developed 3-D stem cell culture of taste buds.

  37. Dazert E, Hall MN. mTOR signaling in disease. Curr Opin Cell Biol. 2011;23:744–55.

    Article  CAS  PubMed  Google Scholar 

  38. Avruch J, Long X, Ortiz-Vega S, Rapley J, Papageorgiou A, Dai N. Amino acid regulation of TOR complex 1. Am J Physiol Metab. 2009;296:E592–602.

    CAS  Google Scholar 

  39. Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10:307–18.

    Article  PubMed  CAS  Google Scholar 

  40. Zoncu R, Efeyan A, Sabatini DM. MTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011. https://doi.org/10.1038/nrm3025.

  41. Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev. 2004;18:1926–45.

    Article  CAS  PubMed  Google Scholar 

  42. Wirawan E, Vanden Berghe T, Lippens S, Agostinis P, Vandenabeele P. Autophagy: for better or for worse. Cell Res. 2012;22:43–61.

    Article  CAS  PubMed  Google Scholar 

  43. Suzuki Y, Takeda M, Sakakura Y, Suzuki N. Distinct expression pattern of insulin-like growth factor family in rodent taste buds. J Comp Neurol. 2005;482:74–84.

    Article  CAS  PubMed  Google Scholar 

  44. Biggs BT, Tang T, Krimm RF. Insulin-like growth factors are expressed at high levels in the taste system, but do not maintain taste bud structure. Chem Senses. 2015;40:600.

    Google Scholar 

  45. Zhang C, Cotter M, Lawton A, Oakley B, Wong L, Zeng Q. Keratin 18 is associated with a subset of older taste cells in the rat. Differentiation. 1995;59:155–62.

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki Y, Takeda M, Sakakura Y, Suzuki N. Distinct expression pattern of insulin-like growth factor family in rodent taste buds. J Comp Neurol. 2005;482:74–84.

    Article  CAS  PubMed  Google Scholar 

  47. Schumachers R, Mosthafs L, Schlessingerj J, Brandenburgll D, Ullrichs A (1991) THE JOURNAL OF BIOLOGICAL CHEMISTRY insulin and insulin-like growth factor-1 binding specificity is determined by distinct regions of their cognate receptors*.

  48. Nakae J, Kido Y, Accili D Distinct and Overlapping Functions of Insulin and IGF-I Receptors.

  49. Kawaguchi H, Murata K. Electric gustatory threshold in diabetics and its clinical significance. Nippon Jibiinkoka Gakkai Kaiho. 1995;98:1291–12961363.

    Article  CAS  PubMed  Google Scholar 

  50. Schelling JL, Tetreault L, Lasagna L, Davis M. Abnormal taste threshold in diabetes. Lancet (London, England). 1965;1:508–12.

    Article  CAS  Google Scholar 

  51. De Carli L, Gambino R, Lubrano C, Rosato R, Bongiovanni D, Lanfranco F, et al. Impaired taste sensation in type 2 diabetic patients without chronic complications: a case–control study. J Endocrinol Investig. 2018;41:765–72.

    Article  CAS  Google Scholar 

  52. Gondivkar SM, Indurkar A, Degwekar S, Bhowate R. Evaluation of gustatory function in patients with diabetes mellitus type 2. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:876–80.

    Article  PubMed  Google Scholar 

  53. Wasalathanthri S, Hettiarachchi P, Prathapan S. Sweet taste sensitivity in pre-diabetics, diabetics and normoglycemic controls: a comparative cross sectional study. BMC Endocr Disord. 2014;14:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yu JH, Shin MS, Lee JR, Choi JH, Koh EH, Lee WJ, et al. Decreased sucrose preference in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2014;104:214–9.

    Article  CAS  PubMed  Google Scholar 

  55. Yoon M-S. The role of mammalian target of Rapamycin (mTOR) in insulin signaling. Nutrients. 2017. https://doi.org/10.3390/nu9111176.

  56. Le Floch JP, Le Lievre G, Sadoun J, Perlemuter L, Peynegre R, Hazard J. Taste impairment and related factors in type I diabetes mellitus. Diabetes Care. 1989;12:173–8.

    Article  PubMed  Google Scholar 

  57. Hardy SL, Brennand CP, Wyse BW. Taste thresholds of individuals with diabetes mellitus and of control subjects. J Am Diet Assoc. 1981;79:286–9.

    CAS  PubMed  Google Scholar 

  58. Pavlidis P, Gouveris H, Kekes G, Maurer J. Electrogustometry thresholds, tongue tip vascularization, and density and morphology of the fungiform papillae in diabetes. B-ENT. 2014;10:271–8.

    CAS  PubMed  Google Scholar 

  59. Le Floch JP, Le Lièvre G, Verroust J, Philippon C, Peynegre R, Perlemuter L. Factors related to the electric taste threshold in type 1 diabetic patients. Diabet Med. 1990;7:526–31.

    Article  PubMed  Google Scholar 

  60. Abbasi AA. Diabetes: diagnostic and therapeutic significance of taste impairment. Geriatrics. 1981;36:73–8.

    CAS  PubMed  Google Scholar 

  61. Negrato C, Tarzia O. Buccal alterations in diabetes mellitus. Diabetol Metab Syndr. 2010;2:1–11. https://doi.org/10.1186/1758-5996-2-3.

    Article  Google Scholar 

  62. Takai S, Yasumatsu K, Inoue M, Iwata S, Yoshida R, Shigemura N, et al. Glucagon-like peptide-1 is specifically involved in sweet taste transmission. FASEB J. 2015. https://doi.org/10.1096/fj.14-265355.

  63. Martin B, Dotson CD, Shin YK, Ji S, Drucker DJ, Maudsley S, et al. Modulation of taste sensitivity by GLP-1 signaling in taste buds. Ann N Y Acad Sci. 2009. https://doi.org/10.1111/j.1749-6632.2009.03920.x.

  64. Noel CA, Sugrue M, Dando R. Participants with pharmacologically impaired taste function seek out more intense, higher calorie stimuli. Appetite. 2017;117:74–81.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) grants 17 K17938 (S.T.) and 19H03818 (N.S.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Takai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Animal Experiments

Mouse husbandry and all mouse experiments were carried out under the ethical guidelines of Kyushu University. All experimental protocols and procedures were approved by the committee for Laboratory Animal Care and Use at Kyushu University in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals (approval number: A29–206).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oral Disease and Nutrition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takai, S., Shigemura, N. Insulin Function in Peripheral Taste Organ Homeostasis. Curr Oral Health Rep 7, 168–173 (2020). https://doi.org/10.1007/s40496-020-00266-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-020-00266-2

Keywords

Navigation