Skip to main content

Advertisement

Log in

Ethnopharmacology, Phytochemistry, and Pharmacology of Ashtanga Ghrita: an Ayurvedic Polyherbal Formulation for Neurological Disorders

  • Natural Products: From Chemistry to Pharmacology (Z-Y Su, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract 

Purpose of Review

Ayurveda is an ancient Indian medical system with unique approaches for the treatment of various brain disorders. Ashtanga Ghrita, a cow Ghrita-based polyherbal classical formulation, has been well defined in ancient Ayurvedic texts Ashtanga Hridya to enhance speech, intellect, and memory. The formulation contains eight potent neuroprotective herbs along with clarified cow butter and milk. The review is aimed to come up with comprehensive scientific evidence regarding the plant ingredients of Ashtanga Ghrita so that it can be used for further clinical studies as well as to treat a variety of neurological diseases.

Recent Findings

The plant ingredients have been practiced since ancient times for various disorders in India as well as worldwide. The plants contain various phytochemicals including terpenes, steroids, glycosides, flavonoids, alkaloids, amino acids, fatty acids, aryl esters, and carbohydrates. The collected pharmacological evidence suggests that all the plant ingredients have neuroprotective, anxiolytic, antidepressant, antioxidant, immunomodulatory, sedative, antiproliferative, and anticonvulsant activity.

Summary

Based on the collected evidence, Ashtanga Ghrita may prove to be an effective neuroprotective drug and might be useful in various neurological disorders. Further, well-designed multicentric clinical trials are required to elucidate and comprehend the therapeutic potential of the formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jessen KR. Glial cells. Int J Biochem Cell Biol. 2004;36(10):1861–7.

    Article  CAS  PubMed  Google Scholar 

  2. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–95.

    Article  CAS  PubMed  Google Scholar 

  3. Uddin MJ, Zidorn C. Traditional herbal medicines against CNS disorders from Bangladesh. Natural Products and Bioprospecting. 2020;14(10):377–410.

    Article  Google Scholar 

  4. Amoateng P, Quansah E, Karikari TK, Asase A, Osei-Safo D, Kukuia KK, Amponsah IK, Nyarko AK. Medicinal plants used in the treatment of mental and neurological disorders in Ghana. Evidence-Based Complement Altern Med. 2018;1(2018):1–14.

    Article  Google Scholar 

  5. Hossain MM, Aka TD, Rahman MS, Uddin AM, Rahman N, Rashid MM. Neuropharmacological activity of the crude ethanolic extract of Syzygium aromaticum flowering bud. Discovery Phytomedicine. 2019;6(4):191–8.

    Article  Google Scholar 

  6. Chen X, Drew J, Berney W, Lei W. Neuroprotective natural products for Alzheimer’s disease. Cells. 2021;10(6):1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahmed S, Khan H, Aschner M, Hasan MM, Hassan ST. Therapeutic potential of naringin in neurological disorders. Food Chem Toxicol. 2019;1(132):110646.

    Article  CAS  Google Scholar 

  8. Kantati YT, Kodjo KM, Dogbeavou KS, Vaudry D, Leprince J, Gbeassor M. Ethnopharmacological survey of plant species used in folk medicine against central nervous system disorders in Togo. J Ethnopharmacol. 2016;2(181):214–20.

    Article  Google Scholar 

  9. Sharma R, Kabra A, Rao MM, Prajapati PK. Herbal and holistic solutions for neurodegenerative and depressive disorders: leads from Ayurveda. Curr Pharm Des. 2018;24(22):2597–608.

    Article  CAS  PubMed  Google Scholar 

  10. Ven Murthy MR, Ranjekar KP, Ramassamy C, Deshpande M. Scientific basis for the use of Indian Ayurvedic medicinal plants in the treatment of neurodegenerative disorders: 1 Ashwagandha. Central Ner Syst Agents Med Chem (Formerly Current Medicinal Chemistry-Central Nervous System Agents). 2010;10(3):238–46.

    Article  CAS  Google Scholar 

  11. Sharma R, Bolleddu R, Maji JK, Ruknuddin G, Prajapati PK. In-vitro α-amylase, α-glucosidase inhibitory activities and in-vivo anti-hyperglycemic potential of different dosage forms of Guduchi (Tinospora cordifolia [Willd.] Miers) prepared with Ayurvedic Bhavana process. Front Pharmacol. 2021;10(12):903.

    Google Scholar 

  12. Sharma R, Prajapati PK. Liquid media’s in Bhavana Samskara: a pharmaceutico-therapeutic prospect. J Phytopharmacol. 2015;4(1):49–57.

    Article  Google Scholar 

  13. Bhinde SM. Pharmacognostical and pharmaceutical analysis of Ashtanga Ghrita-a poly herbal aformulation research & review. J Herbal Sci. 2013;2(3):1–10.

    Google Scholar 

  14. Majumder S, Gautan DNS. A critical review on therapeutic potential of Ashtanga Ghrita. Int J Green Pharm. 2018;11(S51):52–8.

    Google Scholar 

  15. Prajapati PK, Sharma R, Amrutia A, Patgiri BJ. Physicochemical screening and shelf-life evaluation of Kuṅkumādi Ghṛta prepared using Kesara and Nāgakesara. Anc Sci Life. 2017;36(3):129.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shelar M, Nanaware S, Arulmozhi S, Lohidasan S, Mahadik K. Validation of ethnopharmacology of ayurvedic Sarasvata Ghritaand comparative evaluation of its neuroprotective effect with modern alcoholic and lipid-based extracts in β-amyloid induced memory impairment. J Ethnopharmacol. 2018;12(219):182–4.

    Article  Google Scholar 

  17. Goel S, Ojha NK. Ashtanga Ghrita: a noble Ayurveda drug for central nervous system. J Ayurveda Holist Med. 2015;3(2):18–24. This article provided in-depth pharmacological review of plant ingredients of Ashtanga Ghrita.

    Google Scholar 

  18. Lamsal B, Bhandari TR, Panta P, Saiter JM, Pokhrel S, Katuwal TB, Adhikari R. Preparation and physicochemical characterization of ghee and mūrcchita ghŗ̥ta. Journal of Ayurveda and integrative medicine. 2020;11(3):256–60.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sharma R, Martins N, Kuca K, Chaudhary A, Kabra A, Rao MM, Prajapati PK. Chyawanprash: a traditional Indian bioactive health supplement. Biomolecules. 2019;9(5):161.

    Article  CAS  PubMed Central  Google Scholar 

  20. Sharma R, Prajapati PK. Predictive, preventive and personalized medicine: leads from Ayurvedic concept of Prakriti (human constitution). Curr Pharmacol Rep. 2020;3(6):441–50.

    Article  Google Scholar 

  21. Sharma R, Martins N, Chaudhary A, Garg N, Sharma V, Kuca K, Nepovimova E, Tuli HS, Bishayee A, Chaudhary A, Prajapati PK. Adjunct use of honey in diabetes mellitus: a consensus or conundrum. Trends Food Sci Technol. 2020;12(106):254–74.

    Article  CAS  Google Scholar 

  22. Sharma R, Garg N, Verma D, Rathi P, Sharma V, Kuca K, Prajapati PK. Indian medicinal plants as drug leads in neurodegenerative disorders. In Nutraceuticals in brain health and beyond (Academic press). 2021;31–5. https://doi.org/10.1016/B978-0-12-820593-8.00004-5.

  23. Sharma R, Prajapati PK. Remarks on “Herbal immune booster-induced liver injury in the COVID-19 pandemic - a case series.” J Clin Exp Hepatol. 2021. https://doi.org/10.1016/j.jceh.2021.08.025.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chopra B, Dhingra AK, Dhar KL. Psoralea corylifolia L.(Buguchi)-folklore to modern evidence. Fitoterapia. 2013;90:44–56.

    Article  CAS  PubMed  Google Scholar 

  25. Jamil SS, Nizami Q, Salam M. Centella asiatica (Linn.) Urban-a review. Indian J Nat Prod Resouses. 2007;6(2):150–70.

  26. Balkrishna A, Thakur P, Varshney A. Phytochemical profile, pharmacological attributes and medicinal properties of convolvulus prostrates-a cognitive enhancer herb for the management of neurodegenerative etiologies. Front Pharmacol. 2020;11:171. This paper summarized the efficacy of convolvulus prostrates on different neurodegenerative disorders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Husain GM, Mishra D, Singh PN, Rao CV, Kumar V. Ethnopharmacological review of native traditional medicinal plants for brain disorders. Pharmacognosy Review. 2007;1(1):20–8.

  28. Chakraborty P, Gupta OP. A literary review on Vriddhadaru and Kankola as renoprotective medicinal plants. Med Res Publ. 2021;2(1):1–8.

    Google Scholar 

  29. Sharma V, Firdaus Z, Rai H, Nayak PK, Singh TD, Gautam DN. Consumption of Ashtanga Ghrita (clarified cow butter added with herb extracts) improves cognitive dysfunction induced by scopolamine in rats via regulation of acetylcholinesterase activity and oxidative stress. Drug Metabolism and Personalized Therapy. 2021;10:1–14. This research article evaluated the neuroprotective role of Ashtanga Ghrita induced by scopolamine in rats.

    Google Scholar 

  30. Kumar R, Sharma S, Sharma S. A review on Vacha: an effective medicinal plant. World J Pharm Res. 2020;9(6):842–9.

    CAS  Google Scholar 

  31. Khushboo PS, Jadhav VM, Kadam VJ, Sathe NS. Psoralea corylifolia Linn-Kushtanashini. Pharmacogn Rev. 2010;4(7):69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Naveen K, Suresh C, Kumar SS, Chandra TR. Comprehensive literature review of Mandukparni (Centella asiatica) wsr to its medicinal properties. Int J Ayurveda Pharma Res. 2017;5(5):65–71.

    Google Scholar 

  33. Jalwal P, Singh B, Dahiya J, Khokhara S. A comprehensive review on Shankhpushpi a morning glory. Pharma Innov. 2016;5(1):14.

    CAS  Google Scholar 

  34. Jani DD, Unadkat DS. Etymological derivation of synonyms of Asparagus Racemosus Willd. From Various Nighantus: synonyms of Shatavari with its description. Life Sci Leafl. 2021;31:1–8.

    Google Scholar 

  35. Dhama K, Sachan S, Khandia R, Munjal A, MN Iqbal H, K Latheef S, Karthik K, A Samad H, Tiwari R, Dadar M. Medicinal and beneficial health applications of Tinospora cordifolia (Guduchi): a miraculous herb countering various diseases/disorders and its immunomodulatory effects. Recent patents on endocrine, metabolic & immune drug discovery. 2016;10(2):96-111

  36. Singh VP. A review on pharmacodynamics of Ashtamanga Ghrita and its uses in mental and physical growth in children. J Pharmacogn Phytochem. 2019;8(3):3809–12.

    Google Scholar 

  37. Rajput SB, Tonge MB, Karuppayil SM. An overview on traditional uses and pharmacological profile of Acorus calamus Linn.(Sweet flag) and other Acorus species. Phytomedicine. 2014;21(3):268–76.

    Article  CAS  PubMed  Google Scholar 

  38. Sharma V, Sharma R, Gautam DS, Kuca K, Nepovimova E, Martins N. Role of Vacha (Acorus calamus Linn) in neurological and metabolic disorders: evidence from ethnopharmacology, phytochemistry, pharmacology and clinical study. J Clin Med. 2020;9(4):1176. This review article provided the detailed ethnopharmacology, phytochemistry, and pharmacology of Vacha in neurological and metabolic disorders.

    Article  CAS  PubMed Central  Google Scholar 

  39. Gohil KJ, Patel JA, Gajjar AK. Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian J Pharm Sci. 2010;72(5):546.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Amin H, Sharma R, Vyas M, Prajapati PK, Dhiman K. Shankhapushpi (Convolvulus pluricaulis Choisy): validation of the Ayurvedic therapeutic claims through contemporary studies. Int J Green Pharm (IJGP). 2014;8(4):193–200.

    Article  CAS  Google Scholar 

  41. Chawla A, Chawla P, Mangalesh RR, Roy R. Asparagus racemosus (Willd): biological activities & its active principles. Indo Global J Pharm. 2011;2:113–20.

    Article  Google Scholar 

  42. Majumdar S, Gupta S, Prajapati SK, Krishnamurthy S. Neuro-nutraceutical potential of Asparagus racemosus: a review. Neurochem Int. 2021;145:105013.

    Article  CAS  PubMed  Google Scholar 

  43. Sharma M, Sharma A, Kumar A. Ethnopharmacological importance of Asparagus racemosus: a review. J Pharm Biomed Sci. 2011;6(12):1–12.

    CAS  Google Scholar 

  44. Staples GW, Traiperm P. A nomenclatural review of Argyreia (Convolvulaceae). Taxon. 2017;66(2):445–77.

    Article  Google Scholar 

  45. Galani VJ, Patel BG, Patel NB. Argyreia speciosa (Linn. f.) sweet: a comprehensive review. Pharmacogn Rev. 2010;4(8):172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Choudhary N, Siddiqui MB, Azmat S, Khatoon S. Tinospora cordifolia: ethnobotany, phytopharmacology and phytochemistry aspects. Int J Pharm Sci Res. 2013;4(3):891.

    Google Scholar 

  47. Bajpai V, Kumar S, Singh A, Singh J, Negi MP, Bag SK, Kumar N, Konwar R, Kumar B. Chemometric based identification and validation of specific chemical markers for geographical, seasonal and gender variations in Tinospora cordifolia stem using HPLC-ESI-QTOF-MS analysis. Phytochem Anal. 2017;28(4):277–88.

    Article  CAS  PubMed  Google Scholar 

  48. Arunachalam K, Yang X, San TT. Tinospora cordifolia (Willd.) Miers: protection mechanisms and strategies against oxidative stress-related diseases. J Ethnopharmacol. 2022;283:114540.

    Article  CAS  PubMed  Google Scholar 

  49. Rai K, Gupta N, Dharamdasani L, Nair P, Bodhankar P. Bacopa monnieri: a wonder drug changing fortune of people. Int J Appl Sci Biotechnol. 2017;5(2):127–32.

    Article  CAS  Google Scholar 

  50. Rai R, Siddiqui IR, Singh J. Triterpenoid saponins from Acorus calamus. Indian J Chem. 1998;37(B):473–6.

    Google Scholar 

  51. Rai R, Gupta A, Siddiqui IR, Singh J. 1999 Xanthone glycoside from rhizome of Acorus calamus. Indian J Chem. 1999;38(3):1143–4.

    Google Scholar 

  52. Kumar SS, Akram AS, Ahmed TF, Jaabir MM. Phytochemical analysis and antimicrobial activity of the ethanolic extract of Acorus calamus rhizome. Orient J Chem. 2010;26(1):223–7.

    CAS  Google Scholar 

  53. Wu HS, Li YY, Weng LJ, Zhou CX, He QJ, Lou YJ. A Fraction of Acorus calamus L extract devoid of β-asarone enhances adipocyte differentiation in 3T3-L1 cells. Phytother Res: An Int J Devoted Pharmacol Toxicol Eval Nat Prod Deriv. 2007;21(6):562–4.

    Article  CAS  Google Scholar 

  54. Vashi IG, Patel HC. Chemical-constituents and antimicrobial activity of Acorus-Calamus Linn. Comp Physiol Ecol. 1987;12(1):49–51.

    CAS  Google Scholar 

  55. Weber M, Brändle R. Dynamics of nitrogen-rich compounds in roots, rhizomes, and leaves of the sweet flag (Acorus calamus L.) at its natural site. Flora. 1994;189(1):63–8.

    Article  Google Scholar 

  56. Asif M, Siddiqi MT, Ahmad MU. Fatty acid and sugar composition of Acorus calamus Linn. Fette, Seifen, Anstrichmittel. 1984;86(1):24–5.

    Article  CAS  Google Scholar 

  57. Kaushik R, Jain J, Yadav R, Singh L, Gupta D, Gupta A. Isolation of beta-asarone from Acorus calamus Linn. and evaluation of its anticonvulsant activity using MES and PTZ models in mice. Pharmacol Toxicol Biomed Rep. 2017;3(2).

  58. Szliszka E, Czuba ZP, Sêdek Ł, Paradysz A, Król W. Enhanced TRAIL-mediated apoptosis in prostate cancer cells by the bioactive compounds neobavaisoflavone and psoralidin isolated from Psoralea corylifolia. Pharmacol Rep. 2011;63(1):139–48.

    Article  CAS  PubMed  Google Scholar 

  59. Kim JY, Oh KY, Kim JY, Ryu HW, Jeong TS, Park KH. Polyphenols displaying tyrosinase inhibition from the seed of Psoralea corylifolia. J Korean Soc Appl Biol Chem. 2010;53(4):427–32.

    Article  CAS  Google Scholar 

  60. Lin C, Huang Y, Chien M, Sheu S, Chen C. Analysis of bakuchiol, psoralen and angelicin in crude drugs and commercial concentrated products of Fructus Psoraleae. J Food Drug Anal. 2007;15(4):433.

    CAS  Google Scholar 

  61. Katsura H, Tsukiyama RI, Suzuki A, Kobayashi M. In-vitro antimicrobial activities of bakuchiol against oral microorganisms. Antimicrob Agents Chemother. 2001;45(11):3009–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang X, Zhao W, Wang Y, Lu J, Chen X. The chemical constituents and bioactivities of Psoralea corylifolia Linn: a review. Am J Chin Med. 2016;44(01):35–60.

    Article  PubMed  CAS  Google Scholar 

  63. Oyedeji OA, Afolayan AJ. Chemical composition and antibacterial activity of the essential oil of Centella asiatica. Growing in South Africa. Pharm Biol. 2005;43(3):249–52.

    Article  CAS  Google Scholar 

  64. Brinkhaus B, Lindner M, Schuppan D, Hahn EG. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine. 2000;7(5):427–48.

    Article  CAS  PubMed  Google Scholar 

  65. Schaneberg BT, Mikell JR, Bedir E, Khan IA, Nachname V. An improved HPLC method for quantitative determination of six triterpenes in Centella asiatica extracts and commercial products. Die Pharmazie-An Int J Pharm Sci. 2003;58(6):381–4.

    CAS  Google Scholar 

  66. Puttarak P, Panichayupakaranant P. Factors affecting the content of pentacyclic triterpenes in Centella asiatica raw materials. Pharm Biol. 2012;50(12):1508–12.

    Article  CAS  PubMed  Google Scholar 

  67. Torbati FA, Ramezani M, Dehghan R, Amiri MS, Moghadam AT, Shakour N, Elyasi S, Sahebkar A, Emami SA. Ethnobotany, phytochemistry and pharmacological features of Centella asiatica: a comprehensive review. Adv Exp Med Biol. 2021;1(1308):451–99.

    Article  CAS  Google Scholar 

  68. Juengwatanatrakul T, Sritularak B, Amornnopparattanakul P, Tassanawat P, Putalun W, Tanaka H, Morimoto S. Preparation of a specific monoclonal antibody to asiaticoside for the development of an enzyme-linked immunosorbent assay. Analyst. 2011;136(5):1013–7.

    Article  CAS  PubMed  Google Scholar 

  69. Agarwal P, Sharma B, Fatima A, Jain SK. An update on Ayurvedic herb Convolvulus pluricaulis Choisy. Asian Pac J Trop Biomed. 2014;4(3):245–52.

    Article  Google Scholar 

  70. Kapadia N, Acharya N, Acharya S, Shah M. Use of HPTLC to establish a distinct chemical profile for Shankhpushpi and for quantification of scopoletin in Convolvulus pluricaulis Choisy and in commercial formulations of Shankhpushpi. JPC-J Planar Chromatogr-Modern TLC. 2006;19(109):195–9.

    Article  CAS  Google Scholar 

  71. Deshpande SM, Srivastava DN. Chemical examination of the fatty acids of Convolvulus pluricaulis. Indian Oil and SoapJournal. 1969;34(2):217–8.

    CAS  Google Scholar 

  72. Srivastava DN, Bhatt SK, Udupa KN. Gas chromatographic identification of fatty acids, fatty alcohols, and hydrocarbons of Hibiscus rosa-sinensis leaves. J Am Oil Chem Soc. 1976;53(10):607–8.

    Article  CAS  Google Scholar 

  73. Singh GK, Bhandari A. Text book of pharmacognosy. New Delhi: CBS Publishers; 2000. p. 193–4.

    Google Scholar 

  74. Bisht NP, Singh R. Chemical studies of Convolvulus microphyllus Sieb. Planta Med. 1978;34(06):222–3.

    Article  CAS  Google Scholar 

  75. Deshpande SM, Srivastava DN. Chemical studies of Convolvulus pluricaulis. Journal of Indian Chemical Society. 1969;46:759–60.

    CAS  Google Scholar 

  76. Malik J, Karan M, Vasisht K. Attenuating effect of bioactive coumarins from Convolvulus pluricaulis on scopolamine-induced amnesia in mice. Nat Prod Res. 2016;30(5):578–82.

    Article  CAS  PubMed  Google Scholar 

  77. Margret AA, Begum TN, Parthasarathy S, Suvaithenamudhan S. A strategy to employ Clitoria ternatea as a prospective brain drug confronting monoamine oxidase (mao) against neurodegenerative diseases and depression. Natural Products and Bioprospecting. 2015;5(6):293–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hayes PY, Jahidin AH, Lehmann R, Penman K, Kitching W, De Voss JJ. Steroidal saponins from the roots of Asparagus racemosus. Phytochemistry. 2008;69(3):796–804.

    Article  CAS  PubMed  Google Scholar 

  79. Li XM, Cai JL, Wang L, Wang WX, Ai HL, Mao ZC. Two new phenolic compounds and antitumor activities of asparinin A from Asparagus officinalis. J Asian Nat Prod Res. 2017;19(2):164–71.

    Article  CAS  PubMed  Google Scholar 

  80. Sidiq T, Khajuria A, Suden P, Singh S, Satti NK, Suri KA, Srinivas VK, Krishna E, Johri RK. A novel sarsasapogenin glycoside from Asparagus racemosus elicits protective immune responses against HBsAg. Immunol Lett. 2011;135(1–2):129–35.

    Article  CAS  PubMed  Google Scholar 

  81. Mandal D, Banerjee S, Mondal NB, Chakravarty AK, Sahu NP. Steroidal saponins from the fruits of Asparagus racemosus. Phytochemistry. 2006;67(13):1316–21.

    Article  CAS  PubMed  Google Scholar 

  82. Saxena VK, Chourasia S. A new isoflavone from the roots of Asparagus racemosus. Fitoterapia. 2001;72(3):307–9.

    Article  CAS  PubMed  Google Scholar 

  83. Sekine T, Ikegami F, Fukasawa N, Kashiwagi Y, Aizawa T, Fujii Y, Ruangrungsi N, Murakoshi I. Structure and relative stereochemistry of a new polycyclic alkaloid, asparagamine A, showing anti-oxytocin activity, isolated from Asparagus racemosus. Journal of the Chemical Society, Perkin Transactions 1. 1995;(4):391–3.

  84. Le Son H, Anh NP. Phytochemical composition, in-vitro antioxidant and anticancer activities of quercetin from methanol extract of Asparagus cochinchinensis (Lour.) Merr. tuber. J Med Plants Res. 2013;7(46):3360–6.

    CAS  Google Scholar 

  85. Verma A, Dwivedi S, Singh N. Isolation, purification and spectral analysis of pure compound obtained from leaves extract of Asparagus racemosus. World J Pharm Res. 2014;3(1):45–51.

    Google Scholar 

  86. Hamdi A, Jaramillo-Carmona S, Beji RS, Tej R, Zaoui S, Rodríguez-Arcos R, Jiménez-Araujo A, Kasri M, Lachaal M, Bouraoui NK, Guillén-Bejarano R. The phytochemical and bioactivity profiles of wild Asparagus albus L. plant. Food Res Int. 2017;99:720–9.

    Article  CAS  PubMed  Google Scholar 

  87. Singh R, Geetanjali. Asparagus racemosus a review on its phytochemical and therapeutic potential. Nat Prod Res. 2016;30(17):1896–908.

  88. Negi JS, Singh P, Joshi GP, Rawat MS. Bisht: WK. Chemical constituents of Asparagus. Pharmacogn Rev. 2010;4(8):215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Smita SS, Trivedi M, Tripathi D, Pandey-Rai S, Pandey R. Neuromodulatory potential of Asparagus racemosus and its bioactive molecule Shatavarin IV by enhancing synaptic acetylcholine level and nAChR activity. Neurosci Lett. 2021;1(764):136294.

    Article  CAS  Google Scholar 

  90. Agarwal SK. Ergometrine and other constituents of Argyreia speciosa sweet. Indian J Pharm Sci. 1974;36(5):118–9.

    CAS  Google Scholar 

  91. Nair GG, Daniel M, Sabnis SD. Ergolines in the seeds of some Indian Convolvulaceae. Indian J Pharm Sci. 1987;49(3):100–2.

    CAS  Google Scholar 

  92. Sahu NP, Chakravarti RN. Constituents of the leaves of Argyreia speciosa. Phytochemistry. 1971;10(8):1949.

  93. Purushothaman KK, Sarada A, Loganathan D. Phytochemical study of Argyreia speciosa (Vridhadaru). Bull Med Ethnobotenical Res. 1982;3:250–3.

    Google Scholar 

  94. Srivastava A, Shukla YN. Aryl esters and a coumarin from Argyreia speciosa. Indian J Chem. 1998;37(B):192–4.

    Google Scholar 

  95. Daniel M. Polyphenols of some Indian vegetables. Curr Sci. 1989;58(23):1332–44.

    CAS  Google Scholar 

  96. Khan MS, Kamil SM, Ilyas M. Phytochemical investigation on the leaves of Argyreia speciosa. J Indian Chem Soc. 1992;69:110.

    CAS  Google Scholar 

  97. Sharma V, Janmeda P. Extraction, isolation and identification of flavonoid from Euphorbia neriifolia leaves. Arab J Chem. 2017;10(4):509–14.

    Article  CAS  Google Scholar 

  98. Ali SA, Hamed MA, El-Rigal NS, Shabana MH, Kassem ME. Chemical constituents of Argyreia speciosa Fam. Convolvulaceae and its role against hyperglycemia. J Appl Pharm Sci. 2011;8:76.

    Google Scholar 

  99. Shukla YN, Anil S, Sushil K. A coumarin glucoside from Argyreia speciosa roots. Indian Drugs-Bombay. 2001;38(9):487–8.

    CAS  Google Scholar 

  100. Chi S, She G, Han D, Wang W, Liu Z, Liu B. Genus Tinospora: ethnopharmacology, phytochemistry, and pharmacology. Evidence-Based Complement Altern Med. 2016;2016:1–32. https://doi.org/10.1155/2016/9232593.

  101. Kumar P, Kamle M, Mahato DK, Bora H, Sharma B, Rasane P, Bajpai VK. Tinospora cordifolia (Giloy): phytochemistry, ethnopharmacology, clinical application and conservation strategies. Curr Pharm Biotechnol. 2020;21(12):1165–75. This study highlighted the chemical constituents isolated from Tinospora cordifolia.

    Article  CAS  PubMed  Google Scholar 

  102. Chintalwar GJ, Gupta S, Roja G, Bapat VA. Protoberberine alkaloids from callus and cell suspension cultures of Tinospora cordifolia. Pharm Biol. 2003;41(2):81–6.

    Article  CAS  Google Scholar 

  103. Patel MB, Mishra S. Hypoglycemic activity of alkaloidal fraction of Tinospora cordifolia. Phytomedicine. 2011;18(12):1045–52.

    Article  CAS  PubMed  Google Scholar 

  104. Ly PT, Singh S, Shaw CA. Novel environmental toxins: steryl glycosides as a potential etiological factor for age-related neurodegenerative diseases. J Neurosci Res. 2007;85(2):231–7.

    Article  CAS  PubMed  Google Scholar 

  105. Sharma N, Kumar A, Sharma PR, Qayum A, Singh SK, Dutt P, Paul S, Gupta V, Verma MK, Satti NK, Vishwakarma R. A new clerodane furano diterpene glycoside from Tinospora cordifolia triggers autophagy and apoptosis in HCT-116 colon cancer cells. J Ethnopharmacol. 2018;30(211):295–310.

    Article  CAS  Google Scholar 

  106. Yang JH, Kondratyuk TP, Marler LE, Qiu X, Choi Y, Cao H, Yu R, Sturdy M, Pegan S, Liu Y, Wang LQ. Isolation and evaluation of kaempferol glycosides from the fern Neocheiropteris palmatopedata. Phytochemistry. 2010;71(5–6):641–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pathak AK, Agarwal PK, Jain DC. NMR studies of a 20β-hydroxyecdysone, a steroid, isolated from Tinospora cordifolia. Indian J Chem. 1995;34:674–6.

    Google Scholar 

  108. Sharma P, Dwivedee BP, Bisht D, Dash AK, Kumar D. The chemical constituents and diverse pharmacological importance of Tinospora cordifolia. Heliyon. 2019;5(9):e02437.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Lv J, Xu D, Perkovic V, Ma X, Johnson DW, Woodward M, Levin A, Zhang H, Wang H. Testing Study Group Corticosteroid therapy in IgA nephropathy. J Am Soc Nephrol. 2012;23(6):1108–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Maurya R, Handa SS. Tinocordifolin, a sesquiterpene from Tinospora cordifolia. Phytochemistry. 1998;49(5):1343–5.

    Article  CAS  Google Scholar 

  111. Fukuda N, Yonemitsu M, Kimura T. Studies on the constituents of the stems of Tinospora tuberculata Beumee I. N.-trans-and N-cis-feruloyl tyramine, and a new phenolic glucoside. Tinotuberide Chem Pharm Bull. 1983;31(1):156–61.

    Article  CAS  Google Scholar 

  112. Tiwari P, Nayak P, Prusty SK, Sahu PK. Phytochemistry and pharmacology of Tinospora cordifolia: a review. Syst Rev Pharm. 2018;9(1):70–8.

    Article  CAS  Google Scholar 

  113. Dowell A, Davidson G, Ghosh D. Validation of quantitative HPLC method for bacosides in keenmind. Evidence-Based Complement Altern Med. 2015;1(2015):1–8.

    Article  Google Scholar 

  114. Murthy PB, Raju VR, Ramakrisana T, Chakravarthy MS, Kumar KV, Kannababu S, Subbaraju GV. Estimation of twelve bacopa saponins in Bacopa monnieri extracts and formulations by high-performance liquid chromatography. Chem Pharm Bull. 2006;54(6):907–11.

    Article  CAS  Google Scholar 

  115. Chatterji N, Rastogi RP, Dhar ML. Chemical examination of Bacopa monniera Wettst: part II -isolation of chemical constituents. Indian J Chem. 1965;3:24–9.

    CAS  Google Scholar 

  116. Sastri MS, Dhalla NS, Malhotra CL. Chemical investigation of Herpestis monniera Linn (Brahmi). Indian J Pharm. 1959;21:303–4.

    Google Scholar 

  117. Chakravarty AK, Sarkar T, Nakane T, Kawahara N, Masuda K. New phenylethanoid glycosides from Bacopa monniera. Chem Pharm Bull. 2002;50(12):1616–8.

    Article  CAS  Google Scholar 

  118. Mallick MN, Akhtar MS, Najm MZ, Tamboli ET, Ahmad S, Husain SA. Evaluation of anticancer potential of Bacopa monnieri L. against MCF-7 and MDA-MB 231 cell line. J Pharm Bioallied Sci. 2015;7(4):325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kiani AK, Miggiano GA, Aquilanti B, Velluti V, Matera G, Gagliardi L, Bertelli M. Food supplements based on palmitoylethanolamide plus hydroxytyrosol from olive tree or Bacopa monnieri extracts for neurological diseases. Acta Bio Medica: Atenei Parmensis. 2020;91(13-S): pp.e2020007-e2020007. https://doi.org/10.23750/abm.v91i13-S.10582.

  120. Saha PS, Sarkar S, Jeyasri R, Muthuramalingam P, Ramesh M, Jha S. In vitro propagation, phytochemical and neuropharmacological profiles of Bacopa monnieri (L.) Wettst.: a review. Plants. 2020;9(4):411. https://doi.org/10.3390/plants9040411.

  121. Devi SA, Mali AL, Rahee MA, Belinda ED. Antioxidant properties of alpha asarone. Asian J Biochem. 2014;9(2):107–13.

    Article  Google Scholar 

  122. Pages N, Maurois P, Delplanque B, Bac P, Stables JP, Tamariz J, Chamorro G, Vamecq J. Activities of α-asarone in various animal seizure models and in biochemical assays might be essentially accounted for by antioxidant properties. Neurosci Res. 2010;68(4):337–44.

    Article  CAS  PubMed  Google Scholar 

  123. Hei X, Xie M, Xu J, Li J, Liu T. β-Asarone exerts antioxidative effects on H2O2-stimulated PC12 cells by activating Nrf2/HO-1 pathway. Neurochem Res. 2020;45(8):1953–61.

    Article  CAS  PubMed  Google Scholar 

  124. Meng M, Zhang L, Ai D, Wu H, Peng W. β-Asarone ameliorates β-amyloid–induced neurotoxicity in PC12 cells by activating P13K/Akt/Nrf2 signaling pathway. Front Pharmacol. 2021;10(12):659955.

    Article  CAS  Google Scholar 

  125. Yi LT, Li YC, Pan Y, Li JM, Xu Q, Mo SF, Qiao CF, Jiang FX, Xu HX, Lu XB, Kong LD. Antidepressant-like effects of psoralidin isolated from the seeds of Psoralea corylifolia in the forced swimming test in mice. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(2):510–9.

    Article  CAS  PubMed  Google Scholar 

  126. Kim DH, Li H, Han YE, Jeong JH, Lee HJ, Ryu JH. Modulation of inducible nitric oxide synthase expression in LPS-stimulated BV-2 microglia by prenylated chalcones from Cullen corylifolium (L.) Medik. through inhibition of I-κBα degradation. Molecules. 2018;23(1):109.

    Article  PubMed Central  CAS  Google Scholar 

  127. Cooper EL, Ma MJ. Alzheimer disease: clues from traditional and complementary medicine. J Tradit Complement Med. 2017;7(4):380–5.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Xu Y, Cao Z, Khan I, Luo Y. Gotu Kola (Centella asiatica) extract enhances phosphorylation of cyclic AMP response element binding protein in neuroblastoma cells expressing amyloid beta peptide. J Alzheimers Dis. 2008;13(3):341–9.

    Article  PubMed  Google Scholar 

  129. Lee MK, Kim SR, Sung SH, Lim D, Kim H, Choi H, Park HK, Je S, Ki YC. Asiatic acid derivatives protect cultured cortical neurons from glutamate-induced excitotoxicity. Res Commun Mol Pathol Pharmacol. 2000;108(1–2):75–86.

    CAS  PubMed  Google Scholar 

  130. Firdaus Z, Kumar D, Singh SK, Singh TD. Centella asiatica alleviates AlCl3-induced cognitive impairment, oxidative stress, and neurodegeneration by modulating cholinergic activity and oxidative burden in rat brain. Biol Trace Elem Res. 2022;4:1–2.

    Google Scholar 

  131. Subramani R, Anand M, Muralidharan P. Effect of Convolvulus pluricaulis Choisy in obsessive compulsive disorder using animal models. India: PharmaTutor EduLabs; 2013.

    Google Scholar 

  132. Siddiqui NA, Ahmad N, Musthaq N, Chattopadhyaya I, Kumria R, Gupta S. Neuropharmacological profile of extracts of aerial parts of Convolvulus pluricaulis Choisy in mice model. The open neurology journal. 2014;8:11.

    Article  PubMed  Google Scholar 

  133. Sairam K, Priyambada S, Aryya NC, Goel RK. Gastroduodenal ulcer protective activity of Asparagus racemosus: an experimental, biochemical and histological study. J Ethnopharmacol. 2003;86(1):1.

    Article  CAS  PubMed  Google Scholar 

  134. Kashyap P, Muthusamy K, Niranjan M, Trikha S, Kumar S. Sarsasapogenin: a steroidal saponin from Asparagus racemosus as multi target directed ligand in Alzheimer’s disease. Steroids. 2020;1(153):108529.

    Article  CAS  Google Scholar 

  135. Kashyap P, Ram H, Shukla SD, Kumar S. Scopoletin: antiamyloidogenic, anticholinesterase, and neuroprotective potential of a natural compound present in Argyreia speciosa roots by in-vitro and in silico study. Neurosci Insights. 2020;5(15):2633105520937693.

    Google Scholar 

  136. Yusufzai SK, Khan MS, Sulaiman O, Osman H, Lamjin DN. Molecular docking studies of coumarin hybrids as potential acetylcholinesterase, butyrylcholinesterase, monoamine oxidase A/B and β-amyloid inhibitors for Alzheimer’s disease. Chem Cent J. 2018;12(1):1–57.

    Article  CAS  Google Scholar 

  137. Shanish Antony A, DebRoy P, Vadivelan R, Jaysankar K, Vikram M, Nandini S, Sundeep M, Elango K, Suresh B. Amelioration of CNS toxicities of L-dopa in experimental models of Parkinson’s disease by concurrent treatment with Tinospora cordifolia. Hygeia JD Med. 2010;2(1):28–37.

    CAS  Google Scholar 

  138. Kosaraju J, Chinni S, Roy PD, Kannan E, Antony AS, Kumar MS. Neuroprotective effect of Tinospora cordifolia ethanol extract on 6-hydroxy dopamine induced Parkinsonism. Indian J Pharmacol. 2014;46(2):176.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Birla H, Rai SN, Singh SS, Zahra W, Rawat A, Tiwari N, Singh RK, Pathak A, Singh SP. Tinospora cordifolia suppresses neuroinflammation in parkinsonian mouse model. NeuroMol Med. 2019;21(1):42–3.

    Article  CAS  Google Scholar 

  140. Jyoti A, Sethi P, Sharma D. Bacopa monniera prevents from aluminium neurotoxicity in the cerebral cortex of rat brain. J Ethnopharmacol. 2007;111(1):56–62.

    Article  PubMed  Google Scholar 

  141. Sumathi T, Nathiya VC, Sakthikumar M. Protective effect of bacoside-A against morphine-induced oxidative stress in rats. Indian J Pharm Sci. 2011;73(4):409.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Anand T, Pandareesh MD, Bhat PV, Venkataramana M. Anti-apoptotic mechanism of bacoside rich extract against reactive nitrogen species induced activation of iNOS/Bax/caspase 3 mediated apoptosis in L132 cell line. Cytotechnology. 2014;66(5):823–38.

    Article  CAS  PubMed  Google Scholar 

  143. Sekhar VC, Viswanathan G, Baby S. Insights into the molecular aspects of neuroprotective bacoside A and bacopaside I. Curr Neuropharmacol. 2019;17(5):438–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Saraf MK, Prabhakar S, Anand A. Neuroprotective effect of Bacopa monniera on ischemia induced brain injury. Pharmacol Biochem Behav. 2010;97(2):192–7.

    Article  CAS  PubMed  Google Scholar 

  145. Esfandiari E, Ghanadian M, Rashidi B, Mokhtarian A, Vatankhah AM. The effects of Acorus calamus L. in preventing memory loss, anxiety, and oxidative stress on lipopolysaccharide-induced neuroinflammation rat models. Int J Prev Med. 2018;9(85):1–8.

    Google Scholar 

  146. De A, Singh Ms. Acorus Calamus Linn. Rhizomes extract for antidepressant activity in mice model. Advance Research in Pharmaceuticals and Biologicals. 2013;3(4):520–5.

  147. Shashikala GH, Prashanth D, Jyothi CH, Maniyar I, Manjunath H. Evaluation of antidepressant activity of aqueous extract of roots of Acorus calamus in albino mice. World J Pharm Res. 2015;4(10):1357–65.

    CAS  Google Scholar 

  148. Pushpa VH, Shetty P, Suresha RN, Vaibhavi PS, Kalabharathi HL, Satish AM, Naidu S. Antidepressant activity of methanolic extract of Acorus calamus leaves in albino mice. Int J Pharm Technol. 2013;5(2):5458–65.

    Google Scholar 

  149. Sundaramahalingam M, Ramasundaram S, Rathinasamy SD, Natarajan RP, Somasundaram T. Role of Acorus calamus and alpha-asarone on hippocampal dependent memory in noise stress exposed rats. Pak J Biol Sci. 2013;16(16):770–8.

    Article  CAS  PubMed  Google Scholar 

  150. Shukla PK, Khanna VK, Ali MM, Maurya RR, Handa SS, Srimal RC. Protective effect of Acorus calamus against acrylamide induced neurotoxicity. Phytother Res. 2002;16(3):256–60.

    Article  PubMed  Google Scholar 

  151. VengadeshPrabu K, George T, VinothKumar R, Nancy J, Kalaivani M, Vijayapandi P. Neuromodulatory effect of Acorus calamus leaves extract on dopaminergic system in mice. Int J PharmTech Res. 2009;1(4):1255–9.

    Google Scholar 

  152. Reddy S, Rao G, Shetty B, Hn G. Effects of Acorus calamus rhizome extract on the neuromodulatory system in restraint stress male rats. Turk Neurosurg. 2015;25(3):425–31.

    PubMed  Google Scholar 

  153. Pandy V, Jose N, Subhash H. CNS activity of methanol and acetone extracts of Acorus calamus leaves in mice. J Pharmacol Toxicol. 2009;4(2):79–86.

    Article  Google Scholar 

  154. Vohora SB, Shah SA, Dandiya PC. Central nervous system studies on an ethanol extract of Acorus calamus rhizomes. J Ethnopharmacol. 1990;28(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  155. Tripathi AK, Singh RH. Experimental evaluation of antidepressant effect of Vacha (Acorus calamus) in animal models of depression. Ayu. 2010;31(2):153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pawar VS, Anup A, Shrikrishna B, Shivakumar H. Antidepressant-like effects of Acorus calamus in forced swimming and tail suspension test in mice. Asian Pac J Trop Biomed. 2011;1(1):S17–9.

    Article  Google Scholar 

  157. Zhao G, Li S, Qin GW, Fei J, Guo LH. Inhibitive effects of Fructus Psoraleae extract on dopamine transporter and noradrenaline transporter. J Ethnopharmacol. 2007;112(3):498–506.

    Article  PubMed  Google Scholar 

  158. Ning Y, Huang JH, Xia SJ, Bian Q, Chen Y, Zhang XM, Dong JC, Shen ZY. Mechanisms underlying the antiproliferative and prodifferentiative effects of psoralen on adult neural stem cells via DNA microarray. Evidence-Based Complement Altern Med. 2013;2013:1–15. https://doi.org/10.1155/2013/452948

  159. Sivanandan R, Saraswathi P, Rajendran SM. Behavioral effect of Fructus Psoralea on ethanol induced neurodegeneration of hippocampus in Wistar albino rat. Recent Res Sci Technol. 2011;3(10):98–102.

    Google Scholar 

  160. Lee MH, Kim JY, Ryu JH. Prenylflavones from Psoralea corylifolia inhibit nitric oxide synthase expression through the inhibition of I-κB-α degradation in activated microglial cells. Biol Pharm Bull. 2005;28(12):2253–7.

    Article  CAS  PubMed  Google Scholar 

  161. Xu Q, Pan Y, Yi LT, Li YC, Mo SF, Jiang FX, Qiao CF, Xu HX, Lu XB, Kong LD, Kung HF. Antidepressant-like effects of psoralen isolated from the seeds of Psoralea corylifolia in the mouse forced swimming test. Biol Pharm Bull. 2008;31(6):1109–14.

    Article  CAS  PubMed  Google Scholar 

  162. Chen Y, Kong LD, Xia X, Kung HF, Zhang L. Behavioral and biochemical studies of total furocoumarins from seeds of Psoralea corylifolia in the forced swimming test in mice. J Ethnopharmacol. 2005;96(3):451–9.

    Article  CAS  PubMed  Google Scholar 

  163. Chen Y, Wang HD, Xia X, Kung HF, Pan Y, Kong LD. Behavioral and biochemical studies of total furocoumarins from seeds of Psoralea corylifolia in the chronic mild stress model of depression in mice. Phytomedicine. 2007;14(7–8):523–9.

    Article  CAS  PubMed  Google Scholar 

  164. Chen ZJ, Yang YF, Zhang YT, Yang DH. Dietary total prenylflavonoids from the fruits of Psoralea corylifolia L. prevents age-related cognitive deficits and down-regulates Alzheimer’s markers in SAMP8 mice. Molecules. 2018;23(1):196.

    Article  PubMed Central  CAS  Google Scholar 

  165. Kim KA, Shim SH, Ahn HR, Jung SH. Protective effects of the compounds isolated from the seed of Psoralea corylifolia on oxidative stress-induced retinal damage. Toxicol Appl Pharmacol. 2013;269(2):109–20.

    Article  CAS  PubMed  Google Scholar 

  166. Veerendra Kumar MH, Gupta YK. Effect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clin Exp Pharmacol Physiol. 2003;30(5–6):336–42.

    Article  CAS  PubMed  Google Scholar 

  167. Gupta YK, Kumar MV, Srivastava AK. Effect of Centella asiatica on pentylenetetrazole-induced kindling, cognition and oxidative stress in rats. Pharmacol Biochem Behav. 2003;74(3):579–85.

    Article  CAS  PubMed  Google Scholar 

  168. Kumar MV, Gupta YK. Effect of different extracts of Centella asiatica on cognition and markers of oxidative stress in rats. J Ethnopharmacol. 2002;79(2):253–60.

    Article  Google Scholar 

  169. Kumar A, Dogra S, Prakash A. Neuroprotective effects of Centella asiatica against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress. Int J Alzheimer’s Dis. 2009;1:2009.

    Google Scholar 

  170. Gray NE, Harris CJ, Quinn JF, Soumyanath A. Centella asiatica modulates antioxidant and mitochondrial pathways and improves cognitive function in mice. J Ethnopharmacol. 2016;2(180):78–86.

    Article  CAS  Google Scholar 

  171. Chiroma SM, Baharuldin MT, Taib CN, Amom Z, Jagadeesan S, Adenan MI, Moklas MA. Protective effect of Centella asiatica against D-galactose and aluminium chloride induced rats: behavioral and ultrastructural approaches. Biomed Pharmacother. 2019;1(109):853–4.

    Article  CAS  Google Scholar 

  172. Zweig JA, Brandes MS, Brumbach BH, Caruso M, Wright KM, Quinn JF, Soumyanath A, Gray NE. Loss of NRF2 accelerates cognitive decline, exacerbates mitochondrial dysfunction, and is required for the cognitive enhancing effects of Centella asiatica during aging. Neurobiol Aging. 2021;1(100):48–58.

    Article  CAS  Google Scholar 

  173. Chiroma SM, Baharuldin MT, Mat Taib CN, Amom Z, Jagadeesan S, Ilham Adenan M, Mahdi O, Moklas MA. Protective effects of Centella asiatica on cognitive deficits induced by D-gal/AlCl3 via inhibition of oxidative stress and attenuation of acetylcholinesterase level. Toxics. 2019;7(2):19.

    Article  CAS  PubMed Central  Google Scholar 

  174. Matthews DG, Caruso M, Alcazar Magana A, Wright KM, Maier CS, Stevens JF, Gray NE, Quinn JF, Soumyanath A. Caffeoylquinic acids in Centella asiatica reverse cognitive deficits in male 5XFAD Alzheimer’s disease model mice. Nutrients. 2020;12(11):3488.

    Article  CAS  PubMed Central  Google Scholar 

  175. Lawal OM, Wakel F, Dekker M. Consumption of fresh Centella asiatica improves short term alertness and contentedness in healthy females. Journal of Functional Foods. 2021;1(77):104337.

    Article  CAS  Google Scholar 

  176. Thong-Asa W, Tilokskulchai K, Chompoopong S, Tantisira MH. Effect of Centella asiatica on pathophysiology of mild chronic cerebral hypoperfusion in rats. Avicenna J Phytomed. 2018;8(3):210.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Xu MF, Xiong YY, Liu JK, Qian JJ, Zhu L, Gao J. Asiatic acid, a pentacyclic triterpene in Centella asiatica, attenuates glutamate-induced cognitive deficits in mice and apoptosis in SH-SY5Y cells. Acta Pharmacol Sin. 2012;33(5):578–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sbrini G, Brivio P, Fumagalli M, Giavarini F, Caruso D, Racagni G, Dell’Agli M, Sangiovanni E. Calabrese F. Centella asiatica l. Phytosome improves cognitive performance by promoting bdnf expression in rat prefrontal cortex. Nutrients. 2020;12(2):210–26.

    Article  CAS  Google Scholar 

  179. Soumyanath A, Zhong YP, Henson E, Wadsworth T, Bishop J, Gold BG, Quinn JF. Centella asiatica extract improves behavioral deficits in a mouse model of Alzheimer’s disease: investigation of a possible mechanism of action. Int J Alzheimer’s Dis. 2012;15:2012.

    Google Scholar 

  180. Prakash A, Kumar A. Mitoprotective effect of Centella asiatica against aluminum-induced neurotoxicity in rats: possible relevance to its anti-oxidant and anti-apoptosis mechanism. Neurol Sci. 2013;34(8):1403–9.

    Article  PubMed  Google Scholar 

  181. Gray NE, Zweig JA, Matthews DG, Caruso M, Quinn JF, Soumyanath A. Centella asiatica attenuates mitochondrial dysfunction and oxidative stress in Aβ-exposed hippocampal neurons. Oxidative Med Cell Longev. 2017;2017:1–8. https://doi.org/10.1155/2017/7023091.

  182. Matthews DG, Caruso M, Murchison CF, Zhu JY, Wright KM, Harris CJ, Gray NE, Quinn JF, Soumyanath A. Centella asiatica improves memory and promotes antioxidative signaling in 5XFAD mice. Antioxidants. 2019;8(12):630.

    Article  CAS  PubMed Central  Google Scholar 

  183. Firdaus Z, Singh N, Prajapati SK, Krishnamurthy S, Singh TD. Centella asiatica prevents D-galactose-Induced cognitive deficits, oxidative stress and neurodegeneration in the adult rat brain. Drug Chem Toxicol. 2020;15:1–10.

    Google Scholar 

  184. Raghavendra M, Maiti R, Kumar S, Trigunayat A, Mitra S, Acharya SB. Role of Centella asiatica on cerebral post-ischemic reperfusion and long-term hypoperfusion in rats. Int J Green Pharm (IJGP). 2009;3(2):88–96.

  185. Dhanasekaran M, Holcomb LA, Hitt AR, Tharakan B, Porter JW, Young KA, Manyam BV. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer’s disease animal model. Phytother Res: An Int J Devoted Pharmacol Toxicol Eval Nat Prod Deriv. 2009;23(1):14–9.

    Article  Google Scholar 

  186. Defillipo PP, Raposo AH, Fedoce AG, Ferreira AS, Polonini HC, Gattaz WF, Raposo NR. Inhibition of cPLA2 and sPLA2 activities in primary cultures of rat cortical neurons by Centella asiatica water extract. Nat Prod Commun. 2012;7(7):1934578X1200700709.

    Google Scholar 

  187. Rao SB, Chetana M, Devi PU. Centella asiatica treatment during postnatal period enhances learning and memory in mice. Physiol Behav. 2005;86(4):449–57.

    Article  CAS  PubMed  Google Scholar 

  188. Doulah A, Mahmoodi G, Borujeni MP. Evaluation of the pre-treatment effect of Centella asiatica medicinal plants on long-term potentiation (LTP) in rat model of Alzheimer’s disease. Neurosci Lett. 2020;11(729):135026.

    Article  CAS  Google Scholar 

  189. Gupta R, Flora SJ. Effect of Centella asiatica on arsenic induced oxidative stress and metal distribution in rats. J Appl Toxicol: An Int J. 2006;26(3):213–22.

    Article  CAS  Google Scholar 

  190. Malik J, Karan M, Vasisht K. Nootropic, anxiolytic and CNS-depressant studies on different plant sources of shankhpushpi. Pharm Biol. 2011;49(12):1234–42.

    Article  PubMed  Google Scholar 

  191. Sethiya NK, Nahata A, Singh PK, Mishra SH. Neuropharmacological evaluation on four traditional herbs used as nervine tonic and commonly available as Shankhpushpi in India. Journal of Ayurveda Integr Med. 2019;10(1):25–31.

    Article  Google Scholar 

  192. Shalavadi MH, Chandrashekhar VM, Muchchandi IS. Neuroprotective effect of Convolvulus pluricaulis Choisy in oxidative stress model of cerebral ischemia reperfusion injury and assessment of MAP2 in rats. J Ethnopharmacol. 2020;1(249):112393.

    Article  CAS  Google Scholar 

  193. Rachitha P, Krupashree K, Jayashree GV, Kandikattu HK, Amruta N, Gopalan N, Rao MK, Khanum F. Chemical composition, antioxidant potential, macromolecule damage and neuroprotective activity of Convolvulus pluricaulis. J Tradit Complement Med. 2018;8(4):483–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Olakkaran S, Antony A. Convolvulus pluricaulis (Shankhapushpi) ameliorates human microtubule-associated protein tau (hMAPτ) induced neurotoxicity in Alzheimer’s disease Drosophila model. J Chem Neuroanat. 2019;1(95):115–22.

    Google Scholar 

  195. Das R, Sengupta T, Roy S, Chattarji S, Ray J. Convolvulus pluricaulis extract can modulate synaptic plasticity in rat brain hippocampus. Neurological Report. 2020;31(8):597–604.

    CAS  Google Scholar 

  196. Dhingra D, Valecha R. Evaluation of the antidepressant-like activity of Convolvulus pluricaulis choisy in the mouse forced swim and tail suspension tests. Med Sci Monit. 2007;13(7):BR155–61.

    PubMed  Google Scholar 

  197. Bihaqi SW, Singh AP, Tiwari M. In-vivo investigation of the neuroprotective property of Convolvulus pluricaulis in scopolamine-induced cognitive impairments in Wistar rats. Indian J Pharm. 2011;43(5):520.

    Article  Google Scholar 

  198. Kaur M, Prakash A, Kalia AN. Neuroprotective potential of antioxidant potent fractions from Convolvulus pluricaulis Chois. in 3-nitropropionic acid challenged rats. Nutri Neurosci. 2016;19(2):70–8.

    Article  Google Scholar 

  199. Bihaqi SW, Sharma M, Singh AP, Tiwari M. Neuroprotective role of Convolvulus pluricaulis on aluminium induced neurotoxicity in rat brain. J Ethnopharmacol. 2009;124(3):409–15.

    Article  CAS  PubMed  Google Scholar 

  200. Gupta GL, Fernandes J. Protective effect of Convolvulus pluricaulis against neuroinflammation associated depressive behavior induced by chronic unpredictable mild stress in rat. Biomed Pharmacother. 2019;1(109):1698–708.

    Article  CAS  Google Scholar 

  201. Malik J, Choudhary S, Kumar P. Protective effect of Convolvulus pluricaulis standardized extract and its fractions against 3-nitropropionic acid-induced neurotoxicity in rats. Pharm Biol. 2015;53(10):1448–57.

    Article  PubMed  Google Scholar 

  202. Verma S, Sinha R, Kumar P, Amin F, Jain J, Tanwar S. Study of Convolvulus pluricaulis for antioxidant and anticonvulsant activity. Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Central Nervous System Agents). 2012 12(1):55–9.

  203. Bihaqi SW, Singh AP, Tiwari M. Supplementation of Convolvulus pluricaulis attenuates scopolamine-induced increased tau and amyloid precursor protein (AβPP) expression in rat brain. Indian J Pharmacol. 2012;44(5):593.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Sharma K, Bhatnagar M, Kulkarni SK. Effect of Convolvulus pluricaulis Choisy. and Asparagus racemosus Willd on learning and memory in young and old mice: a comparative evaluation. Indian J Exp Biol. 2010;48(5):479–85.

    PubMed  Google Scholar 

  205. Dhwaj AV, Singh R. Reversal effect of Asparagus racemosus Wild (Liliaceae) root extract on memory deficits of mice. Int J Drug Dev Res. 2011;3(2):314–23.

    Google Scholar 

  206. Selvaraj K, Sivakumar G, Pillai AA, Veeraraghavan VP, Bolla SR, Veeraraghavan GR, Rengasamy G, Joseph JP, Janardhana PB. Phytochemical Screening, HPTLC fingerprinting and in vitro antioxidant activity of root extract of Asparagus racemosus. Pharmacognosy J. 2019;11(4):818–23.

    Article  CAS  Google Scholar 

  207. Uddin MS, Asaduzzaman M, Mamun AA, Iqbal MA, Wahid F, Rony RK. Neuroprotective activity of Asparagus racemosus Linn. against ethanol-induced cognitive impairment and oxidative stress in rats brain: auspicious for controlling the risk of Alzheimer’s disease. J Alzheimers Dis Parkinsonism. 2016;6(4):1–10.

    Article  Google Scholar 

  208. Wiboonpun N, Phuwapraisirisan P, Tip-pyang S. Identification of antioxidant compound from Asparagus racemosus. Phytotherapy Res: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2004;18(9):771–3.

    Article  CAS  Google Scholar 

  209. Ojha R, Sahu AN, Muruganandam AV, Singh GK, Krishnamurthy S. Asparagus racemosus enhances memory and protects against amnesia in rodent models. Brain Cogn. 2010;74(1):1–9.

    Article  PubMed  Google Scholar 

  210. Krishnamurthy S, Garabadu D, Ranga RN. Asparagus racemosus modulates the hypothalamic-pituitary-adrenal axis and brain monoaminergic systems in rats. Nutr Neurosci. 2013;16(6):255–61.

    Article  PubMed  Google Scholar 

  211. Lalert L, Kruevaisayawan H, Amatyakul P, Ingkaninan K, Khongsombat O. Neuroprotective effect of Asparagus racemosus root extract via the enhancement of brain-derived neurotrophic factor and estrogen receptor in ovariectomized rats. J Ethnopharmacol. 2018;28(225):336–41.

    Article  Google Scholar 

  212. Parihar MS, Hemnani T. Experimental excitotoxicity provokes oxidative damage in mice brain and attenuation by extract of Asparagus racemosus. J Neural Transm. 2004;111(1):1–2.

    Article  CAS  PubMed  Google Scholar 

  213. Joon P, Dhingra D, Parle M. Biochemical evidence for anti-autistic potential of Asparagus racemosus. Int J Plant Sci. 2020;15(1):42–51.

    Article  Google Scholar 

  214. Dhingra D, Kumar V. Pharmacological evaluation for antidepressant-like activity of Asparagus racemosus Wild in mice. Pharmacologyonline. 2007;3:133–52.

    Google Scholar 

  215. Ahmad MP, Hussain A, Siddiqui HH, Wahab S, Adak M. Effect of methanolic extract of Asparagus racemosus Willd. on lipopolysaccharide induced-oxidative stress in rats. Pakistan J Pharm Sci. 2015;28(2):509–13.

    Google Scholar 

  216. Joshi T, Sah SP, Singh A. Antistress activity of ethanolic extract of Asparagus racemosus wild roots in mice. Indian J Exp Biol. 2012;50(6):419–24.

    PubMed  Google Scholar 

  217. Singh GK, Garabadu D, Muruganandam AV, Joshi VK, Krishnamurthy S. Antidepressant activity of Asparagus racemosus in rodent models. Pharmacol Biochem Behav. 2009;91(3):283–90.

    Article  CAS  PubMed  Google Scholar 

  218. Lalert L, Kruevaisayawan H, Amatyakul P, Khongsombat O. Neuroprotective effects of the Asparagus racemosus root extract on ovariectomized rats. J Physiol Biomed Sci. 2013;26(1):18–22.

    Google Scholar 

  219. Garabadu D, Krishnamurthy S. Asparagus racemosus attenuates anxiety-like behavior in experimental animal models. Cell Mol Neurobiol. 2014;34(4):511–21.

    Article  PubMed  Google Scholar 

  220. Jagdish P, Reena C, Pooja S, Maheep B. In-vivo investigation of antiamnesic effect of Asparagus racemosus root extract in scopolamine induced amnesic mice. Int J Herbal Med. 2015;3(5 Part A):20–4.

    Google Scholar 

  221. Sharma U, Kumar N, Singh B, Munshi RK, Bhalerao S. Immunomodulatory active steroidal saponins from Asparagus racemosus. Med Chem Res. 2013;22(2):573–9.

    Article  CAS  Google Scholar 

  222. Hanumanthachar J, Navneet K, Jyotibala C. Evaluation of nootropic effect of Argyreia speciosa in mice. J Health Sci. 2007;53(4):382–8.

    Article  Google Scholar 

  223. Vyawahare NS, Bodhankar SL. Effect of Argyreia speciosa extract on learning and memory paradigms in mice. Pharmacogn Mag. 2009;5(17):43.

    Google Scholar 

  224. Galani VJ, Patel BG. Central nervous system activity of Argyreia speciosa roots in mice. Res J Pharm Technol. 2009;2(2):331–4.

    Google Scholar 

  225. Galani VJ, Patel BG. Psychotropic activity of Argyreia speciosa roots in experimental animals. Ayu. 2011;32(3):380–4.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Galani VJ, Patel BG. Effect of hydroalcoholic extract of Argyreia speciosa roots against experimentally-induced anxiety, depression and convulsions in rodents. Int J Biomed Pharm Sci. 2011;5(1):31–5.

    Google Scholar 

  227. Jaiswal BS, Tailang M. Protective effect of ethanolic extract from the root of Argyreia speciosa against global cerebral ischemic reperfusion injury in rats. J Drug Deliv Therapeutics. 2018;8(6):8–15.

    Article  CAS  Google Scholar 

  228. Habbu PV, Shastry RA, Mahadevan KM, Joshi H, Das SK. Hepatoprotective and antioxidant effects of Argyreia speciosa in rats. Afr J Tradit Complement Altern Med. 2008;5(2):158–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Habbu PV, Mahadevan KM, Shastry RA, Chilakwad SR. Antiamnesic potentiality of Argyreia speciosa (Burm f.) Boj. in mice. Int J Green Pharm. 2010;4(2):83–9.

    Article  Google Scholar 

  230. Patel NB, Galani VJ, Patel BG. Antistress activity of Argyreia speciosa roots in experimental animals. J Ayurveda integra med. 2011;2(3):129–36.

    Article  CAS  Google Scholar 

  231. Hossain MM, Hasan SR, Akter R, Islam MN, Rashid MJ, Saha MR, Mazumder ME, Rana S. Evaluation of analgesic and neuropharmacological properties of the aerial part of Tinospora cordifolia Miers. in mice. Stamford J Pharm Sci. 2009;2(2):31–7.

    Article  Google Scholar 

  232. Barua A, Hossain R, Banik P, Sultana R, Absar N, Hossain R. In-vivo sedative and anxiolytic potential in mice for methanolic extract of Tinospora cordifolia. Trends Appl Sci Res. 2019;14:193–8.

    Article  Google Scholar 

  233. Mishra R, Manchanda S, Gupta M, Kaur T, Saini V, Sharma A, Kaur G. Tinospora cordifolia ameliorates anxiety-like behavior and improves cognitive functions in acute sleep deprived rats. Sci Rep. 2016;6(1):1–5.

    Article  CAS  Google Scholar 

  234. Onoja OJ, Elufioye TO, Sherwani ZA, Ul-Haq Z. Molecular docking studies and anti-Alzheimer’s potential of isolated compounds from Tinospora cordifolia. J Biol Active Prod from Nature. 2020;10(2):100–21.

    CAS  Google Scholar 

  235. Patil SG, Trigunayat A, Chaudhary AK. Adaptogenic action of different dosages forms of Guduchi with special reference to learning and memory. Journal of AYUSH: Ayurveda, Yoga, Unani, Siddha and Homeopathy. 2015;4(1):24–9.

    Google Scholar 

  236. Malve HO, Raut SB, Marathe PA, Rege NN. Effect of combination of Phyllanthus emblica, Tinospora cordifolia, and Ocimum sanctum on spatial learning and memory in rats. J Ayurveda Integr Med. 2014;5(4):209.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Le XT, Pham HT, Do PT, Fujiwara H, Tanaka K, Li F, Van Nguyen T, Nguyen KM, Matsumoto K. Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems. Neurochem Res. 2013;38(10):2201–15.

    Article  CAS  PubMed  Google Scholar 

  238. Kasture SB, Kasture VS, Joshua AJ, Damodaran A, Amit A. Nootropic activity of BacoMind, an enriched phytochemical composition from Bacopa monnieri. J Nat Remedies. 2007;7(1):166–73.

    CAS  Google Scholar 

  239. Anbarasi K, Vani G, Balakrishna K, Devi CS. Effect of bacoside A on brain antioxidant status in cigarette smoke exposed rats. Life Sci. 2006;78(12):1378–84.

    Article  CAS  PubMed  Google Scholar 

  240. Saini N, Singh D, Sandhir R. Neuroprotective effects of Bacopa monnieri in experimental model of dementia. Neurochem Res. 2012;37(9):1928–37. This article evaluated the neuroprotective efficacy of Bacopa monnieri against dementia.

    Article  CAS  PubMed  Google Scholar 

  241. Rastogi M, Ojha RP, Devi BP, Aggarwal A, Agrawal A, Dubey GP. Amelioration of age associated neuroinflammation on long term bacosides treatment. Neurochem Res. 2012;37(4):869–74.

    Article  CAS  PubMed  Google Scholar 

  242. Shobana C, Kumar RR, Sumathi T. Alcoholic extract of Bacopa monniera Linn. protects against 6-hydroxydopamine-induced changes in behavioral and biochemical aspects: a pilot study. Cell Mol Neurobiol. 2012;32(7):1099–112.

    Article  PubMed  Google Scholar 

  243. Sumathi T, Shobana C, Christinal J, Anusha C. Protective effect of Bacopa monniera on methyl mercury-induced oxidative stress in cerebellum of rats. Cell Mol Neurobiol. 2012;32(6):979–87.

    Article  PubMed  Google Scholar 

  244. Jyoti A, Sharma D. Neuroprotective role of Bacopa monniera extract against aluminium-induced oxidative stress in the hippocampus of rat brain. Neurotoxicology. 2006;27(4):451–7.

    Article  CAS  PubMed  Google Scholar 

  245. Liu X, Yue R, Zhang J, Shan L, Wang R, Zhang W. Neuroprotective effects of bacopaside I in ischemic brain injury. Restor Neurol Neurosci. 2013;31(2):109–23.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design, Jyoti Singh, Anupriya Singh, and Vineet Sharma; manuscript revision, Meenakshi Singh and Ruchika Garg; editing and supervision, Rohit Sharma, Tryambak Deo Singh, and Dev Nath Singh Gautam. All authors approved submission of the final manuscript.

Corresponding author

Correspondence to Dev Nath Singh Gautam.

Ethics declarations

Institutional Review Board Statement

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Natural Products: From Chemistry to Pharmacology

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Singh, A., Sharma, V. et al. Ethnopharmacology, Phytochemistry, and Pharmacology of Ashtanga Ghrita: an Ayurvedic Polyherbal Formulation for Neurological Disorders. Curr Pharmacol Rep 8, 376–407 (2022). https://doi.org/10.1007/s40495-022-00300-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-022-00300-0

Keywords

Navigation