Skip to main content
Log in

Using Zebrafish to Investigate Interactions Between Xenobiotics and Microbiota

  • Microbiome (A Patterson, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Humans underwent coevolution with microbes that engage in a range of mutually beneficial functions. The intestinal microbiome consists of trillions of microorganisms and their genes and encoded functions that colonize the host gastrointestinal tract. There is growing interest in understanding the mechanisms by which microbiota interact with xenobiotics to affect host toxicity outcomes. This review will focus on exploring recent evidence that supports interactions between xenobiotics and host-associated microbes, specifically in the zebrafish model. The benefits and shortcomings of the zebrafish model in the context of chemical-microbiome interactions and major knowledge gaps will also be discussed.

Recent Findings

A multitude of studies in larval or adult zebrafish demonstrate the utility of the model system to describe dysbiosis, characterized by alterations in the community structure of host-associated microbiota, following exposure to drugs or environmental chemicals. Recent evidence obtained in the zebrafish model supports a toxicokinetic interaction between chemicals and microbiota in which intestinal microorganisms bioactivate or detoxify xenobiotics. Fewer studies support the toxicodynamic theory in which xenobiotic-induced dysbiosis subsequently triggers adverse outcomes in the host organism.

Summary

Zebrafish is a vertebrate experimental model widely used for toxicological research in the context of hazard identification, chemical prioritization, and mode-of-action elucidation. Zebrafish is also a powerful model for microbiome research because it is relatively straightforward to control colonization status during early development via the generation, maintenance, and conventionalization of axenic animals. Larval zebrafish can therefore be uniquely leveraged to illuminate toxicokinetic and toxicodynamic implications of host-associated microbiota on chemical exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Voreades N, Kozil A, Weir TL. Diet and the development of the human intestinal microbiome. Front Microbiol. 2014;5:494. https://doi.org/10.3389/fmicb.2014.00494.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8. https://doi.org/10.1126/science.1110591.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar RD. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787–803. https://doi.org/10.3748/wjg.v21.i29.8787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol. 2008;8(6):458–66. https://doi.org/10.1038/nri2340.

    Article  PubMed  CAS  Google Scholar 

  5. Hubbard TD, Murray IA, Nichols RG, Cassel K, Podolsky M, Kuzu G, et al. Dietary broccoli impacts microbial community structure and attenuates chemically induced colitis in mice in an Ah receptor dependent manner. J Funct Foods. 2017;37:685–98. https://doi.org/10.1016/j.jff.2017.08.038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Wallace BD, Roberts AB, Pollet RM, Ingle JD, Biernat KA, Pellock SJ, et al. Structure and inhibition of microbiome beta-glucuronidases essential to the alleviation of cancer drug toxicity. Chem Biol. 2015;22(9):1238–49. https://doi.org/10.1016/j.chembiol.2015.08.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108(7):3047–52. https://doi.org/10.1073/pnas.1010529108.

    Article  PubMed  Google Scholar 

  8. Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 2007;19(2):59–69. https://doi.org/10.1016/j.smim.2006.10.002.

    Article  PubMed  CAS  Google Scholar 

  9. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503. https://doi.org/10.1038/nature12111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gunnarsson L, Jauhiainen A, Kristiansson E, Nerman O, Larsson DG. Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ Sci Technol. 2008;42(15):5807–13. https://doi.org/10.1021/es8005173.

    Article  PubMed  CAS  Google Scholar 

  11. Raftery TD, Isales GM, Yozzo KL, Volz DC. High-content screening assay for identification of chemicals impacting spontaneous activity in zebrafish embryos. Environ Sci Technol. 2014;48(1):804–10. https://doi.org/10.1021/es404322p.

    Article  PubMed  CAS  Google Scholar 

  12. •• Phelps D, Brinkman NE, Keely SP, Anneken EM, Catron TR, Betancourt D, et al. Microbial colonization is required for normal neurobehavioral development in zebrafish. Sci Rep. 2017;7(1):11244. https://doi.org/10.1038/s41598-017-10517-5.12This article reported that hyperactivity in 10 dpf axenic zebrafish could be partially restored to control-like behavioral outcomes following monocolonizations with single strains of bacteria. Importantly, this paper showed that microbes were required to be present by 6 days of life to restore normal behavior in 10-day old zebrafish.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Faria M, Bedrossiantz J, Prats E, Rovira Garcia X, Gomez-Canela C, Pina B, et al. Deciphering the mode of action of pollutants impairing the fish larvae escape response with the vibrational startle response assay. Sci Total Environ. 2019;672:121–8. https://doi.org/10.1016/j.scitotenv.2019.03.469.

    Article  PubMed  CAS  Google Scholar 

  14. Glazer L, Hawkey AB, Wells CN, Drastal M, Odamah KA, Behl M, et al. Developmental exposure to low concentrations of organophosphate flame retardants causes life-long behavioral alterations in zebrafish. Toxicol Sci. 2018;165(2):487–98. https://doi.org/10.1093/toxsci/kfy173.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bruni G, Rennekamp AJ, Velenich A, McCarroll M, Gendelev L, Fertsch E, et al. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nat Chem Biol. 2016;12(7):559–66. https://doi.org/10.1038/nchembio.2097.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bosse GD, Peterson RT. Development of an opioid self-administration assay to study drug seeking in zebrafish. Behav Brain Res. 2017;335:158–66. https://doi.org/10.1016/j.bbr.2017.08.001.

    Article  PubMed  CAS  Google Scholar 

  17. Yozzo KL, Isales GM, Raftery TD, Volz DC. High-content screening assay for identification of chemicals impacting cardiovascular function in zebrafish embryos. Environ Sci Technol. 2013;47(19):11302–10. https://doi.org/10.1021/es403360y.

    Article  PubMed  CAS  Google Scholar 

  18. Martin WK, Tennant AH, Conolly RB, Prince K, Stevens JS, DeMarini DM, et al. High-throughput video processing of heart rate responses in multiple wild-type embryonic zebrafish per imaging field. Sci Rep. 2019;9(1):145. https://doi.org/10.1038/s41598-018-35949-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bailey KR, Crawley JN. Anxiety-related behaviors in mice. In: Buccafusco JJ, editor. Methods of behavior analysis in neuroscience. Frontiers in neuroscience. Boca Raton (FL): CRC Press/Taylor & Francis; 2009.

    Google Scholar 

  20. Vliet SM, Ho TC, Volz DC. Behavioral screening of the LOPAC(1280) library in zebrafish embryos. Toxicol Appl Pharmacol. 2017;329:241–8. https://doi.org/10.1016/j.taap.2017.06.011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474(7351):327–36. https://doi.org/10.1038/nature10213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292(5519):1115–8. https://doi.org/10.1126/science.1058709.

    Article  PubMed  CAS  Google Scholar 

  23. Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci U S A. 2009;106(34):14728–33. https://doi.org/10.1073/pnas.0904489106.

    Article  PubMed  PubMed Central  Google Scholar 

  24. • Catron TR, Keely SP, Brinkman NE, Zurlinden TJ, Wood CE, Wright JR, et al. Host developmental toxicity of BPA and BPA alternatives is inversely related to microbiota disruption in zebrafish. Toxicol Sci. 2019;167(2):468–83. https://doi.org/10.1093/toxsci/kfy261This article reported a novel observation showing that concentration-dependent microbial disruption was inversely related to host developmental toxicity. Importantly, variation in microbial community structure was established in control zebrafish across independent experiments.

    Article  PubMed  CAS  Google Scholar 

  25. • Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, et al. The composition of the zebrafish intestinal microbial community varies across development. ISME J. 2016;10(3):644–54. https://doi.org/10.1038/ismej.2015.140This article reported the variation in microbiota across zebrafish life stages and established the influence of diet and environment at each stage, information that is critical for understanding how microbiota changes might correlate with the timing of other developmental processes.

    Article  PubMed  CAS  Google Scholar 

  26. Rodriguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050. https://doi.org/10.3402/mehd.v26.26050.

    Article  PubMed  Google Scholar 

  27. Kostic AD, Howitt MR, Garrett WS. Exploring host-microbiota interactions in animal models and humans. Genes Dev. 2013;27(7):701–18. https://doi.org/10.1101/gad.212522.112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wang AR, Ran C, Ringo E, Zhou Z. G. Progress in fish gastrointestinal microbiota research. Reviews in Aquaculture. 2018;10(3):626–40. https://doi.org/10.1111/raq.12191.

    Article  Google Scholar 

  29. Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, et al. Evidence for a core gut microbiota in the zebrafish. ISME J. 2011;5(10):1595–608. https://doi.org/10.1038/ismej.2011.38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. •• Catron TR, Swank A, Wehmas LC, Phelps D, Keely SP, Brinkman NE, et al. Microbiota alter metabolism and mediate neurodevelopmental toxicity of 17beta-estradiol. Sci Rep. 2019;9(1):7064. https://doi.org/10.1038/s41598-019-43346-9.30This article demonstrated that colonization status of zebrafish influences metabolism of exogenous estradiol in larval zebrafish. It is also the first paper to link a phenotypic consequence (e.g. phase-specific hypoactivity in a behavioral assay) to the host zebrafish.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. https://doi.org/10.1371/journal.pbio.1002533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Milligan-Myhre K, Charette JR, Phennicie RT, Stephens WZ, Rawls JF, Guillemin K, et al. Study of host-microbe interactions in zebrafish. Methods Cell Biol. 2011;105:87–116. https://doi.org/10.1016/B978-0-12-381320-6.00004-7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wong S, Rawls JF. Intestinal microbiota composition in fishes is influenced by host ecology and environment. Mol Ecol. 2012;21(13):3100–2.

    Article  Google Scholar 

  34. Bevins CL, Salzman NH. The potter's wheel: the host's role in sculpting its microbiota. Cell Mol Life Sci. 2011;68(22):3675–85. https://doi.org/10.1007/s00018-011-0830-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. •• Rawls JF, Mahowald MA, Ley RE, Gordon JI. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell. 2006;127(2):423–33. https://doi.org/10.1016/j.cell.2006.08.043This was the first paper in zebrafish to support the hypothesis that intestinal microbial composition is influenced by host-specific factors. The study used reciprocal transplantations between zebrafish and mice to reveal similar signaling mechanisms and selection factors in both host organisms.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017;20(2):145–55. https://doi.org/10.1038/nn.4476.

    Article  PubMed  CAS  Google Scholar 

  37. Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014;38:1–12. https://doi.org/10.1016/j.bbi.2013.12.015.

    Article  PubMed  CAS  Google Scholar 

  38. O'Malley D, Quigley EM, Dinan TG, Cryan JF. Do interactions between stress and immune responses lead to symptom exacerbations in irritable bowel syndrome? Brain Behav Immun. 2011;25(7):1333–41. https://doi.org/10.1016/j.bbi.2011.04.009.

    Article  PubMed  CAS  Google Scholar 

  39. Ochoa-Reparaz J, Mielcarz DW, Begum-Haque S, Kasper LH. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol. 2011;69(2):240–7. https://doi.org/10.1002/ana.22344.

    Article  PubMed  CAS  Google Scholar 

  40. Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A. 2006;103(33):12511–6. https://doi.org/10.1073/pnas.0601056103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest. 2011;121(6):2126–32. https://doi.org/10.1172/JCI58109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3(7):521–33. https://doi.org/10.1038/nri1132.

    Article  PubMed  CAS  Google Scholar 

  43. Russell SL, Gold MJ, Hartmann M, Willing BP, Thorson L, Wlodarska M, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 2012;13(5):440–7. https://doi.org/10.1038/embor.2012.32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Okazaki F, Zang L, Nakayama H, Chen Z, Gao ZJ, Chiba H, et al. Microbiome alteration in Type 2 diabetes mellitus model of zebrafish. Sci Rep. 2019;9(1):867. https://doi.org/10.1038/s41598-018-37242-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kanther M, Tomkovich S, Xiaolun S, Grosser MR, Koo J, Flynn EJ 3rd, et al. Commensal microbiota stimulate systemic neutrophil migration through induction of serum amyloid A. Cell Microbiol. 2014;16(7):1053–67. https://doi.org/10.1111/cmi.12257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. •• Murdoch CC, Espenschied ST, Matty MA, Mueller O, Tobin DM, Rawls JF. Intestinal Serum amyloid A suppresses systemic neutrophil activation and bactericidal activity in response to microbiota colonization. PLoS Pathog. 2019;15(3):e1007381. https://doi.org/10.1371/journal.ppat.1007381This article reported that microbes stimulate production of a protein to signal to neurotrophils and the immune system to react to wounding. Provides a critical link between microbiota function within the zebrafish host.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. He Q, Wang L, Wang F, Li Q. Role of gut microbiota in a zebrafish model with chemically induced enterocolitis involving toll-like receptor signaling pathways. Zebrafish. 2014;11(3):255–64. https://doi.org/10.1089/zeb.2013.0917.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lu Y, Li X, Liu S, Zhang Y, Zhang D. Toll-like receptors and inflammatory bowel disease. Front Immunol. 2018;9:72. https://doi.org/10.3389/fimmu.2018.00072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Vazquez-Baeza Y, Hyde ER, Suchodolski JS, Knight R. Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks. Nat Microbiol. 2016;1:16177. https://doi.org/10.1038/nmicrobiol.2016.177.

    Article  PubMed  CAS  Google Scholar 

  50. •• Davis DJ, Bryda EC, Gillespie CH, Ericsson AC. Microbial modulation of behavior and stress responses in zebrafish larvae. Behav Brain Res. 2016;311:219–27. https://doi.org/10.1016/j.bbr.2016.05.040This article reported that addition of a probiotic (Lactobacillus) was able to mitigate the anxiety-like behavior in 6 dpf axenic zebrafish.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12. https://doi.org/10.1016/j.tins.2013.01.005.

    Article  PubMed  CAS  Google Scholar 

  52. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol Psychiatry. 2014;19(2):146–8. https://doi.org/10.1038/mp.2013.65.

    Article  PubMed  CAS  Google Scholar 

  53. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63. https://doi.org/10.1016/j.cell.2013.11.024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26:26191. https://doi.org/10.3402/mehd.v26.26191.

    Article  PubMed  Google Scholar 

  55. Chu DM, Ma J, Prince AL, Antony KM, Seferovic MD, Aagaard KM. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat Med. 2017;23(3):314–26. https://doi.org/10.1038/nm.4272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR, et al. Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled Trial. Front Aging Neurosci. 2016;8:256. https://doi.org/10.3389/fnagi.2016.00256.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23(3):255–64, e119. https://doi.org/10.1111/j.1365-2982.2010.01620.x.

    Article  PubMed  CAS  Google Scholar 

  58. Mao Z, Li Y, Dong T, Zhang L, Zhang Y, Li S, et al. Exposure to titanium dioxide nanoparticles during pregnancy changed maternal gut microbiota and increased blood glucose of rat. Nanoscale Res Lett. 2019;14(1):26. https://doi.org/10.1186/s11671-018-2834-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Broderick NA, Buchon N, Lemaitre B. Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology. MBio. 2014;5(3):e01117–4. https://doi.org/10.1128/mBio.01117-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Nguyen TP, Clarke CF. Folate status of gut microbiome affects Caenorhabditis elegans lifespan. BMC Biol. 2012;10:66–4. https://doi.org/10.1186/1741-7007-10-66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8(343):343ra82. https://doi.org/10.1126/scitranslmed.aad7121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8(1):39. https://doi.org/10.1186/s13073-016-0294-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Dethlefsen L, Huse S, Sogin ML, Relman DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008;6(11):e280. https://doi.org/10.1371/journal.pbio.0060280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zhou L, Limbu SM, Shen M, Zhai W, Qiao F, He A, et al. Environmental concentrations of antibiotics impair zebrafish gut health. Environ Pollut. 2018;235:245–54. https://doi.org/10.1016/j.envpol.2017.12.073.

    Article  PubMed  CAS  Google Scholar 

  65. Gaulke CA, Barton CL, Proffitt S, Tanguay RL, Sharpton TJ. Triclosan exposure is associated with rapid restructuring of the microbiome in adult zebrafish. PLoS One. 2016;11(5):e0154632. https://doi.org/10.1371/journal.pone.0154632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zang L, Ma Y, Huang W, Ling Y, Sun L, Wang X, et al. Dietary Lactobacillus plantarum ST-III alleviates the toxic effects of triclosan on zebrafish (Danio rerio) via gut microbiota modulation. Fish Shellfish Immunol. 2019;84:1157–69. https://doi.org/10.1016/j.fsi.2018.11.007.

    Article  PubMed  CAS  Google Scholar 

  67. • Weitekamp C, Phelps D, Swank A, McCord J, Sobus J, Catron TR, et al. Triclosan-selected host-associated microbiota perform xenobiotic biotransformations in larval zebrafish. Toxicol Sci. 2019;172(1):109–122. https://doi.org/10.1093/toxsci/kfz166. First paper in zebrafish to shown that xenobiotic-selected microbes biotransform the parent chemical into a metabolite with an unknown toxicity profile.

    Article  Google Scholar 

  68. Wan Z, Wang C, Zhou J, Shen M, Wang X, Fu Z, et al. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere. 2019;217:646–58. https://doi.org/10.1016/j.chemosphere.2018.11.070.

    Article  PubMed  CAS  Google Scholar 

  69. Qiao R, Sheng C, Lu Y, Zhang Y, Ren H, Lemos B. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci Total Environ. 2019;662:246–53. https://doi.org/10.1016/j.scitotenv.2019.01.245.

    Article  PubMed  CAS  Google Scholar 

  70. Jin Y, Xia J, Pan Z, Yang J, Wang W, Fu Z. Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish. Environ Pollut. 2018;235:322–9. https://doi.org/10.1016/j.envpol.2017.12.088.

    Article  PubMed  CAS  Google Scholar 

  71. Klaassen CD, Cui JY. Review: mechanisms of how the intestinal microbiota alters the effects of drugs and bile acids. Drug Metab Dispos. 2015;43(10):1505–21. https://doi.org/10.1124/dmd.115.065698.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Liu Y, Yao Y, Li H, Qiao F, Wu J, Du ZY, et al. Influence of endogenous and exogenous estrogenic endocrine on intestinal microbiota in zebrafish. PLoS One. 2016;11(10):e0163895. https://doi.org/10.1371/journal.pone.0163895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. He S, Wang Q, Li S, Ran C, Guo X, Zhang Z, et al. Antibiotic growth promoter olaquindox increases pathogen susceptibility in fish by inducing gut microbiota dysbiosis. Sci China Life Sci. 2017;60(11):1260–70. https://doi.org/10.1007/s11427-016-9072-6.

    Article  PubMed  CAS  Google Scholar 

  74. Qiao R, Deng Y, Zhang S, Wolosker MB, Zhu Q, Ren H, et al. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere. 2019;236:124334. https://doi.org/10.1016/j.chemosphere.2019.07.065.

    Article  PubMed  CAS  Google Scholar 

  75. Chen L, Hu C, Lok-Shun Lai N, Zhang W, Hua J, Lam PKS, et al. Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish. Environ Pollut. 2018;240:17–26. https://doi.org/10.1016/j.envpol.2018.04.062.

    Article  PubMed  CAS  Google Scholar 

  76. Xia J, Lu L, Jin C, Wang S, Zhou J, Ni Y, et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 2018;209:1–8. https://doi.org/10.1016/j.cbpc.2018.03.007.

    Article  PubMed  CAS  Google Scholar 

  77. Almeida AR, Tacao M, Machado AL, Golovko O, Zlabek V, Domingues I, et al. Long-term effects of oxytetracycline exposure in zebrafish: a multi-level perspective. Chemosphere. 2019;222:333–44. https://doi.org/10.1016/j.chemosphere.2019.01.147.

    Article  PubMed  CAS  Google Scholar 

  78. Chen L, Guo Y, Hu C, Lam PKS, Lam JCW, Zhou B. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: implications for host health in zebrafish. Environ Pollut. 2018;234:307–17. https://doi.org/10.1016/j.envpol.2017.11.074.

    Article  PubMed  CAS  Google Scholar 

  79. Ma YSL, Lei Y, Jia P, Lu C, Wu J, Xi C, et al. Sex dependent effects of silver nanoparticles on the zebrafish gut microbiota. Envinromental Science: Nano. 2018;5(3). https://doi.org/10.1039/C7EN00740J.

    CAS  Google Scholar 

  80. Zheng M, Lu J, Lin G, Su H, Sun J, Luan T. Dysbiosis of gut microbiota by dietary exposure of three graphene-family materials in zebrafish (Danio rerio). Environ Pollut. 2019;254(Pt A):112969. https://doi.org/10.1016/j.envpol.2019.112969.

    Article  PubMed  CAS  Google Scholar 

  81. Jin C, Luo T, Zhu Z, Pan Z, Yang J, Wang W, et al. Imazalil exposure induces gut microbiota dysbiosis and hepatic metabolism disorder in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 2017;202:85–2. https://doi.org/10.1016/j.cbpc.2017.08.007.

    Article  PubMed  CAS  Google Scholar 

  82. Wang X, Shen M, Zhou J, Jin Y. Chlorpyrifos disturbs hepatic metabolism associated with oxidative stress and gut microbiota dysbiosis in adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol. 2019;216:19–28. https://doi.org/10.1016/j.cbpc.2018.11.010.

    Article  PubMed  CAS  Google Scholar 

  83. Zhang R, Pan Z, Wang X, Shen M, Zhou J, Fu Z, et al. Short-term propamocarb exposure induces hepatic metabolism disorder associated with gut microbiota dysbiosis in adult male zebrafish. Acta Biochim Biophys Sin (Shanghai). 2019;51(1):88–96. https://doi.org/10.1093/abbs/gmy153.

    Article  PubMed  Google Scholar 

  84. Baker N, Knudsen T, Williams A. Abstract Sifter: a comprehensive front-end system to PubMed. F1000Res. 2017;6. https://doi.org/10.12688/f1000research.12865.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Tal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Human and Animal Rights and Informed Consent

All reported animal experiments performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catron, T.R., Gaballah, S. & Tal, T. Using Zebrafish to Investigate Interactions Between Xenobiotics and Microbiota. Curr Pharmacol Rep 5, 468–480 (2019). https://doi.org/10.1007/s40495-019-00203-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-019-00203-7

Keywords

Navigation