Skip to main content
Log in

The potter’s wheel: the host’s role in sculpting its microbiota

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Animals, ranging from basal metazoans to primates, are host to complex microbial ecosystems; engaged in a symbiotic relationship that is essential for host physiology and homeostasis. Epithelial surfaces vary in the composition of colonizing microbiota as one compares anatomic sites, developmental stages and species origin. Alterations of microbial composition likely contribute to susceptibility to several distinct diseases. The forces that shape the colonizing microbial composition are the focus of much current investigation, and it is evident that there are pressures exerted both by the host and the external environment to mold these ecosystems. The focus of this review is to discuss recent studies that demonstrate the critical importance of host factors in selecting for its microbiome. Greater insight into host–microbiome interactions will be essential for understanding homeostasis at mucosal surfaces, and developing useful interventions when homeostasis is disrupted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693. PMCID:16819463

    Article  PubMed  Google Scholar 

  2. Fraune S, Bosch TC (2010) Why bacteria matter in animal development and evolution. Bioessays 32(7):571–580

    Article  PubMed  CAS  Google Scholar 

  3. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904

    Article  PubMed  CAS  Google Scholar 

  4. Chow J, Mazmanian SK (2010) A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 7(4):265–276

    Article  PubMed  CAS  Google Scholar 

  5. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    Article  PubMed  CAS  Google Scholar 

  6. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638. PMCID:15931718

    Article  PubMed  Google Scholar 

  7. Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G et al (2011) Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci USA 108(15):6252–6257. PMCID:3076821

    Article  PubMed  CAS  Google Scholar 

  8. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 108(Suppl 1):4578–4585. PMCID:3063592

    Article  PubMed  CAS  Google Scholar 

  9. Palmer C, Bik EM, digiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biology 5(7):e177. PMCID:1896187

    Article  PubMed  Google Scholar 

  10. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rrna sequencing. PLoS Biology 6(11):e280. PMCID:17943117

    Article  PubMed  Google Scholar 

  11. Peterson J, Garges S, Giovanni M, mcinnes P, Wang L, Schloss JA et al (2009) The NIH human microbiome project. Genome Res 19(12):2317–2323. PMCID:2792171

    Article  PubMed  Google Scholar 

  12. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484

    Article  PubMed  CAS  Google Scholar 

  13. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697

    Article  PubMed  CAS  Google Scholar 

  14. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  PubMed  CAS  Google Scholar 

  15. Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh J et al (2011) Moving pictures of the human microbiome. Genome Biol 12(5):R50

    Article  PubMed  Google Scholar 

  16. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Article  PubMed  CAS  Google Scholar 

  17. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920. PMCID:15790844

    Article  PubMed  Google Scholar 

  18. Brugman S, Nieuwenhuis EE (2010) Mucosal control of the intestinal microbial community. J Mol Med 88(9):881–888

    Article  PubMed  Google Scholar 

  19. Hooper LV, Macpherson AJ (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10(3):159–169

    Article  PubMed  CAS  Google Scholar 

  20. Chung H, Kasper DL (2010) Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immunol 22:455–460

    Article  PubMed  CAS  Google Scholar 

  21. Fraune S, Bosch TC (2007) Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci USA 104(32):13146–13151. PMCID:1934924

    Article  PubMed  CAS  Google Scholar 

  22. Rawls JF, Mahowald MA, Ley RE, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127:423–433

    Article  PubMed  CAS  Google Scholar 

  23. Ochman H, Worobey M, Kuo CH, Ndjango JB, Peeters M, Hahn BH et al (2010) Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biology 8(11):e1000546. PMCID:2982803

    Article  PubMed  Google Scholar 

  24. Hartman AL, Lough DM, Barupal DK, Fiehn O, Fishbein T, Zasloff M et al (2009) Human gut microbiome adopts an alternative state following small bowel transplantation. Proc Natl Acad Sci USA 106(40):17187–17192. PMCID:2746123

    Article  PubMed  CAS  Google Scholar 

  25. Bry L, Falk PG, Midtvedt T, Gordon JI (1996) A model of host-microbial interactions in an open mammalian ecosystem. Science 273(5280):1380–1383

    Article  PubMed  CAS  Google Scholar 

  26. Hooper LV, Xu J, Falk PG, Midtvedt T, Gordon JI (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 96:9833–9838

    Article  PubMed  CAS  Google Scholar 

  27. Wacklin P, Makivuokko H, Alakulppi N, Nikkila J, Tenkanen H, Rabina J, et al (2011) Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS One 6(5):e20113. PMCID: 3098274

    Article  PubMed  CAS  Google Scholar 

  28. Sela DA, Mills DA (2010) Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol 18(7):298–307. PMCID:2902656

    Article  PubMed  CAS  Google Scholar 

  29. Zivkovic AM, German JB, Lebrilla CB, Mills DA (2011) Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci USA 108[Suppl 1]:4653–4658. PMCID:3063602

    Article  PubMed  CAS  Google Scholar 

  30. locascio RG, Ninonuevo MR, Freeman SL, Sela DA, Grimm R, Lebrilla CB et al (2007) Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J Agric Food Chem 55(22):8914–8919

    Article  PubMed  CAS  Google Scholar 

  31. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR et al (2008) The genome sequence of Bifidobacterium longum subsp. Infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA 105(48):18964–18969. PMCID:2596198

    Article  PubMed  CAS  Google Scholar 

  32. Hansen J, Gulati A, Sartor RB (2010) The role of mucosal immunity and host genetics in defining intestinal commensal bacteria. Curr Opin Gastroenterol 26(6):564–571

    Article  PubMed  CAS  Google Scholar 

  33. Falk PG, Hooper LV, Midtvedt T, Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62(4):1157–1170

    PubMed  CAS  Google Scholar 

  34. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  PubMed  CAS  Google Scholar 

  35. Bouskra D, Brezillon C, Berard M, Werts C, Varona R, Boneca IG et al (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456(7221):507–510

    Article  PubMed  CAS  Google Scholar 

  36. Hooper LV, Stappenbeck TS, Hong CV, Gordon JI (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273

    Article  PubMed  CAS  Google Scholar 

  37. Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313(5790):1126–1130

    Article  PubMed  CAS  Google Scholar 

  38. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118

    Article  PubMed  CAS  Google Scholar 

  39. McGuckin MA, Linden SK, Sutton P, Florin TH (2011) Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9(4):265–278

    Article  PubMed  CAS  Google Scholar 

  40. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105(39):15064–15069

    Article  PubMed  CAS  Google Scholar 

  41. Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 108[Suppl 1]:4659–4665

    Article  PubMed  CAS  Google Scholar 

  42. Hansson GC, Johansson ME (2010) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes 1(1):51–54. PMCID: 3035142.

    Article  PubMed  Google Scholar 

  43. Feng T, Elson CO (2011) Adaptive immunity in the host-microbiota dialog. Mucosal Immunol 4(1):15–21

    Article  PubMed  CAS  Google Scholar 

  44. Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO (2009) A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci USA 106(46):19256–19261

    Article  PubMed  CAS  Google Scholar 

  45. Bergstrom KS, Kissoon-Singh V, Gibson DL, Ma C, Montero M, Sham HP et al (2010) Muc2 protects against lethal infectious colitis by disassociating pathogenic and commensal bacteria from the colonic mucosa. PLoS Pathogens 6(5):e1000902

    Article  PubMed  Google Scholar 

  46. Fu J, Wei B, Wen T, Johansson ME, Liu X, Bradford E et al (2011) Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J Clin Invest 121(4):1657–1666

    Article  PubMed  CAS  Google Scholar 

  47. Hapfelmeier S, Lawson MA, Slack E, Kirundi JK, Stoel M, Heikenwalder M et al (2010) Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328(5986):1705–1709

    Article  PubMed  CAS  Google Scholar 

  48. Fagarasan S, Muramatsu M, Suzuki K, Nagaoka H, Hiai H, Honjo T (2002) Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298(5597):1424–1427

    Article  PubMed  CAS  Google Scholar 

  49. Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T et al (2004) Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci USA 101(7):1981–1986

    Article  PubMed  CAS  Google Scholar 

  50. Boman HG (1995) Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 13:61–92

    Article  PubMed  CAS  Google Scholar 

  51. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870):389–395

    Article  PubMed  CAS  Google Scholar 

  52. Fraune S, Augustin R, Anton-Erxleben F, Wittlieb J, Gelhaus C, Klimovich VB et al (2010) In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides. Proc Natl Acad Sci USA 107(42):18067–18072. PMCID:2964230

    Article  PubMed  CAS  Google Scholar 

  53. Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW et al (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319(5864):777–782

    Article  PubMed  CAS  Google Scholar 

  54. Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjoberg J, Amir E et al (2010) Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol 11(1):76–82

    Article  PubMed  CAS  Google Scholar 

  55. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 105(52):20858–20863. PMCID:19075245

    Article  PubMed  CAS  Google Scholar 

  56. Porter EM, Bevins CL, Ghosh D, Ganz T (2002) The multifaceted Paneth cell. Cell Mol Life Sci 59(1):156–170

    Article  PubMed  CAS  Google Scholar 

  57. Ouellette AJ (2010) Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol 26(6):547–553

    Google Scholar 

  58. Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9(5):356–368

    Article  PubMed  CAS  Google Scholar 

  59. Meyer-Hoffert U, Hornef MW, Henriques-Normark B, Axelsson LG, Midtvedt T, Putsep K et al (2008) Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut 57(6):764–771

    Article  PubMed  CAS  Google Scholar 

  60. Petnicki-Ocwieja T, Hrncir T, Liu YJ, Biswas A, Hudcovic T, Tlaskalova-Hogenova H et al (2009) Nod2 is required for the regulation of commensal microbiota in the intestine. Proc Natl Acad Sci USA 106(37):15813–15818

    Article  PubMed  CAS  Google Scholar 

  61. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G et al (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307(5710):731–734

    Article  PubMed  CAS  Google Scholar 

  62. Biswas A, Liu YJ, Hao L, Mizoguchi A, Salzman NH, Bevins CL et al (2010) Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proc Natl Acad Sci USA 107(33):14739–14744. PMCID:2930434

    Article  PubMed  CAS  Google Scholar 

  63. Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB et al (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4(4):337–349

    Article  PubMed  CAS  Google Scholar 

  64. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498

    Article  PubMed  CAS  Google Scholar 

  65. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C et al (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31(4):677–689

    Article  PubMed  CAS  Google Scholar 

  66. Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL et al (1999) Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286:113–117

    Article  PubMed  CAS  Google Scholar 

  67. Schroeder BO, Wu Z, Nuding S, Groscurth S, Marcinowski M, Beisner J et al (2011) Reduction of disulphide bonds unmasks potent antimicrobial activity of human beta-defensin 1. Nature 469(7330):419–423

    Article  PubMed  CAS  Google Scholar 

  68. Wehkamp J, Salzman NH, Porter E, Nuding S, Weichenthal M, Petras RE et al (2005) Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA 102(50):18129–18134

    Article  PubMed  CAS  Google Scholar 

  69. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328(5975):228–231

    Article  PubMed  CAS  Google Scholar 

  70. Sokol H, Vasquez N, Hoyeau-Idrissi N, Seksik P, Beaugerie L, Lavergne-Slove A et al (2010) Crypt abscess-associated microbiota in inflammatory bowel disease and acute self-limited colitis. World J Gastroenterol 16(5):583–587. PMCID:2816270

    Article  PubMed  Google Scholar 

  71. Saleh M, Elson CO (2011) Experimental inflammatory bowel disease: insights into the host-microbiota dialog. Immunity 34(3):293–302

    Article  PubMed  CAS  Google Scholar 

  72. Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC et al (2007) Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2(2):119–129

    Article  PubMed  CAS  Google Scholar 

  73. Barman M, Unold D, Shifley K, Amir E, Hung K, Bos N et al (2008) Enteric Salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect Immun 76(3):907–915

    Article  PubMed  CAS  Google Scholar 

  74. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthei M, Kremer M et al (2007) Salmonella enteric serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biology 5(10):e244

    Article  Google Scholar 

  75. Croswell A, Amir E, Teggatz P, Barman M, Salzman NH (2009) Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect Immun 77(7):2741–2753

    Article  PubMed  CAS  Google Scholar 

  76. Sekirov I, Tam NM, Jogova M, Robertson ML, Li Y, Lupp C et al (2008) Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect Immun 76(10):4726–4736

    Article  PubMed  CAS  Google Scholar 

  77. Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio SP, Paixao TA et al (2009) Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5(5):476–486. PMCID:2768556

    Article  PubMed  CAS  Google Scholar 

  78. Winter SE, Thiennimitr P, Winter MG, Butler BP, Huseby DL, Crawford RW et al (2010) Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467(7314):426–429. PMCID:2946174

    Article  PubMed  CAS  Google Scholar 

  79. Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140(6):859–870

    Article  PubMed  CAS  Google Scholar 

  80. Peterson DA, Frank DN, Pace NR, Gordon JI (2008) Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3(6):417–427

    Article  PubMed  CAS  Google Scholar 

  81. Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9(4):279–290

    Article  PubMed  CAS  Google Scholar 

  82. Bik EM, Eckburg PB, Gill SR, Nelson KE, Purdom EA, Francois F et al (2006) Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA 103(3):732–737

    Article  PubMed  CAS  Google Scholar 

  83. Price LB, Liu CM, Johnson KE, Aziz M, Lau MK, Bowers J et al (2010) The effects of circumcision on the penis microbiome. PLoS ONE 5(1):e8422

    Article  PubMed  Google Scholar 

  84. Kim TK, Thomas SM, Ho M, Sharma S, Reich CI, Frank JA et al (2009) Heterogeneity of vaginal microbial communities within individuals. J Clin Microbiol 47(4):1181–1189

    Article  PubMed  CAS  Google Scholar 

  85. Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ (2004) Bacterial biota in the human distal esophagus. Proc Natl Acad Sci USA 101(12):4250–4255

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors apologize that, because of the selective focus, many interesting investigations and reviews were not included. The authors’ work related to this topic was supported in part by AI57757, AI32738, AI50843, AI76246, and HD59127 from the National Institutes of Health, and by the Crohn’s and Colitis Foundation of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nita H. Salzman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bevins, C.L., Salzman, N.H. The potter’s wheel: the host’s role in sculpting its microbiota. Cell. Mol. Life Sci. 68, 3675–3685 (2011). https://doi.org/10.1007/s00018-011-0830-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0830-3

Keywords

Navigation