Skip to main content

Advertisement

Log in

Plant Flavone Apigenin: an Emerging Anticancer Agent

  • Cancer Chemoprevention (R Agarwal, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Research in cancer chemoprevention provides convincing evidence that increased intake of vegetables and fruits may reduce the risk of several human malignancies. Phytochemicals present therein provide beneficial anti-inflammatory and antioxidant properties that serve to improve the cellular microenvironment. Compounds known as flavonoids categorized anthocyanidins, flavonols, flavanones, flavonols, flavones, and isoflavones have shown considerable promise as chemopreventive agents. Apigenin (4′,5,7-trihydroxyflavone), a major plant flavone, possessing antioxidant, anti-inflammatory, and anticancer properties affecting several molecular and cellular targets used to treat various human diseases. Epidemiologic and case-control studies have suggested apigenin reduces the risk of certain cancers. Studies demonstrate that apigenin retains potent therapeutic properties alone and/or increases the efficacy of several chemotherapeutic drugs in combination on a variety of human cancers. Apigenin’s anticancer effects could also be due to its differential effects in causing minimal toxicity to normal cells with delayed plasma clearance and slow decomposition in the liver increasing the systemic bioavailability in pharmacokinetic studies. Here we discuss the anticancer role of apigenin highlighting its potential activity as a chemopreventive and therapeutic agent. We also highlight the current caveats that preclude apigenin for its use in the human trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

4-HPR:

N-(4-Hydroxyphenyl) retinamide

5-FU:

Fluorouracil

ACF:

Aberrant crypt foci

ADM:

Doxorubicin

ADP:

Adenosine di-phosphate

AICR:

American Institute for Cancer Research

AOM:

Azoxymethane

APC:

Adenomatous polyposis coli

ATF3:

Activating transcription factor 3

BCRP:

Breast cancer resistance protein

CK2:

Casein kinase 2

COX-2:

Cyclooxygenase-2

DISC:

Death-inducing signaling complex

DOX:

Doxorubicin

DR4:

Death receptor 4

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular regulated kinase

FAK:

Focal adhesion kinase

GADD45:

DNA fragmentation factor-45

Gli1:

Glioma-associated oncogene 1

GLUT1:

Glucose transporter 1

GSTA1:

Glutathione S-transferase A1

HDAC:

Histone deacetylase

HIF-1α:

Hypoxia-inducible factor 1-alpha

hTERT:

Telomerase reverse transcriptase

ICAM-1:

Intercellular adhesion molecule-1

IFNAR1:

Type I interferon receptor 1

IFN-γ:

Interferon gamma

IGF:

Insulin-like growth factor

IL6:

Interleukin-6

JAK:

Janus kinase

JNK:

c-Jun amino-terminal kinase

KLF4:

Krüpple-like factor 4

MAPK:

Mitogen-activated protein kinases

MMP:

Matrix metalloproteinases

NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-ĸB:

Nuclear factor-kappaB

NIS:

Na+/I− symporter

NSCLC:

Non-small cell lung cancer

ODC:

Ornithine decarboxylase

PARP:

Poly (ADP-ribose) polymerase

PD-L1:

Programmed death-ligand 1

PDPK FA:

Proline-directed protein kinase FA

PI3K:

Phosphatidylinositol-4,5-bisphosphate 3-kinase

PKC:

Protein kinase C

PLGA:

Poly-lactic-co-glycolide

PMA:

Protein kinase C-activating phorbol ester

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

Stat:

Signal transducer and activator of transcription

TGF-β:

Transforming growth factor-beta

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligands

TRAMP:

Transgenic adenocarcinoma of the mouse prostate

UGT1A1:

UDP-glucuronosyltransferase 1–1

VEGF:

Vascular endothelial growth factor

WCRF:

World Cancer Research Fund

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Fidler MM, Soerjomataram I, Bray F. A global view on cancer incidence and national levels of the human development index. Int J Cancer. 2016;139:2436–46.

    Article  CAS  PubMed  Google Scholar 

  3. Lippman SM, Hong WK. Cancer prevention science and practice. Cancer Res. 2002;62:5119–25.

    CAS  PubMed  Google Scholar 

  4. Gupta S. Prostate cancer chemoprevention: current status and future prospects. Toxicol Appl Pharmacol. 2007;224:369–76.

    Article  CAS  PubMed  Google Scholar 

  5. Key TJ, Schatzkin A, Willett WC, Allen NE, Spencer EA, Travis RC. Diet, nutrition and the prevention of cancer. Public Health Nutr. 2004;7:187–200.

    Article  PubMed  Google Scholar 

  6. Newell-McGloughlin M. Nutritionally improved agricultural crops. Plant Physiol. 2008;147:939–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79:727–47.

    CAS  PubMed  Google Scholar 

  8. Hertog MG. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Int Medicine. 1995;155:381–6.

    Article  CAS  Google Scholar 

  9. Aherne SA, O’Brien NM. Dietary flavonols: chemistry, food content, and metabolism. Nutrition. 2002;18:75–81.

    Article  CAS  PubMed  Google Scholar 

  10. de Vries JH, Janssen PL, Hollman PC, van Staveren WA, Katan MB. Consumption of quercetin and kaempferol in free-living subjects eating a variety of diets. Cancer Lett. 1997;114:114–41.

    Google Scholar 

  11. Johannot L, Somerset SM. Age-related variations in flavonoid intake and sources in the Australian population. Public Health Nutr. 2006;9:1045–54.

    Article  PubMed  Google Scholar 

  12. Kim H-Y, Kim OH, Sung MK. Effects of phenol-depleted and phenol-rich diets on blood markers of oxidative stress, and urinary excretion of quercetin and kaempferol in healthy volunteers. J Am Coll Nutr. 2003;22:217–23.

    Article  CAS  PubMed  Google Scholar 

  13. Arango D, Morohashi K, Yilmaz A, Kuramochi K, Parihar A, Brahimaj B, et al. Molecular basis for the action of a dietary flavonoid revealed by the comprehensive identification of apigenin human targets. Proc Natl Acad Sci U S A. 2013a;110:E2153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McKay DL, Blumberg JB. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res. 2006;20:519–30.

    CAS  Google Scholar 

  15. Shukla S, Gupta S. Apigenin: a promising molecule for cancer prevention. Pharm Res. 2010;27:962–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sung B, Chung HY, Kim ND. Role of apigenin in cancer prevention via the induction of apoptosis and autophagy. J Cancer Prev. 2016;21:216–26.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandström B, et al. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr. 1999;81:447–55.

    Article  CAS  PubMed  Google Scholar 

  18. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768–80.

    Article  CAS  PubMed  Google Scholar 

  19. Yang CS, Landau JM, Huang MT, Newmark HL. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr. 2001;21:381–406.

    Article  CAS  PubMed  Google Scholar 

  20. O’Prey J, Brown J, Fleming J, Harrison PR. Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem Pharmacol. 2003;66:2075–88.

    Article  PubMed  CAS  Google Scholar 

  21. Thiery-Vuillemin A, Nguyen T, Pivot X, Spano JP, Dufresnne A, Soria JC. Molecularly targeted agents: their promise as cancer chemopreventive interventions. Eur J Cancer. 2005;41:2003–15.

    Article  CAS  PubMed  Google Scholar 

  22. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonols, flavones and Isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr. 2000;130:2243–50.

    CAS  PubMed  Google Scholar 

  23. Janssen K, Mensink R, Cox F, Harryvan J, Hovenier R, Hollman P, et al. Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study. Am J Clin Nutr. 1998;67:255–62.

    CAS  PubMed  Google Scholar 

  24. Graf J. Herbal anti-inflammatory agents for skin disease. Skin Therapy Lett. 2000;5:3–5.

    CAS  PubMed  Google Scholar 

  25. Osada M, Imaoka S, Funae Y. Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1alpha protein. FEBS Lett. 2004;575:59–63.

    Article  CAS  PubMed  Google Scholar 

  26. Menichincheri M, Ballinari D, Bargiotti A, Bonomini L, Ceccarelli W, D'Alessio R, et al. Catecholic flavonoids acting as telomerase inhibitors. J Med Chem. 2004;47:6466–75.

    Article  CAS  PubMed  Google Scholar 

  27. Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem. 2005a;280:5636–45.

    Article  CAS  PubMed  Google Scholar 

  28. Kim MH. Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J Cell Biochem. 2003;89:529–38.

    Article  CAS  PubMed  Google Scholar 

  29. Way TD, Kao MC, Lin JK. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem. 2004a;279:4479–89.

    Article  CAS  PubMed  Google Scholar 

  30. Way TD, Kao MC, Lin JK. Degradation of HER2/neu by apigenin induces apoptosis through cytochrome c release and caspase-3 activation in HER2/neu-overexpressing breast cancer cells. FEBS Lett. 2005;579:145–52.

    Article  CAS  PubMed  Google Scholar 

  31. Weldon CB, McKee A, Collins-Burow BM, Melnik LI, Scandurro AB, McLachlan JA, et al. PKC-mediated survival signaling in breast carcinoma cells: a role for MEK1-AP1 signaling. Int J Oncol. 2005;26:763–8.

    CAS  PubMed  Google Scholar 

  32. Cao X, Liu B, Cao W, Zhang W, Zhang F, Zhao H, et al. Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells. Chin J Cancer Res. 2013;25:212–22.

    PubMed  PubMed Central  Google Scholar 

  33. Harrison ME, Power Coombs MR, Delaney LM, Hoskin DW. Exposure of breast cancer cells to a subcytotoxic dose of apigenin causes growth inhibition, oxidative stress, and hypophosphorylation of Akt. Exp Mol Pathol. 2014;97:211–7.

    Article  CAS  PubMed  Google Scholar 

  34. Bai H, Jin H, Yang F, Zhu H, Cai J. Apigenin induced MCF-7 cell apoptosis-associated reactive oxygen species. Scanning. 2014;36:622–31.

    Article  CAS  PubMed  Google Scholar 

  35. Lin CH, Chang CY, Lee KR, Lin HJ, Chen TH, Wan L. Flavones inhibit breast cancer proliferation through the Akt/FOXO3a signaling pathway. BMC Cancer. 2015;15:958.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lindenmeyer F, Li H, Menashi S, Soria C, Lu H. Apigenin acts on the tumor cell invasion process and regulates protease production. Nutr Cancer. 2001;39:139–47.

    Article  CAS  PubMed  Google Scholar 

  37. Yin F, Giuliano AE, Law RE, Van Herle AJ. Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-cDK regulators and ERK MAP kinase activation in breast carcinoma cells. Anticancer Res. 2001a;21:413–20.

    CAS  PubMed  Google Scholar 

  38. Wang C, Kurzer MS. Phytoestrogen concentration determines effects on DNA synthesis in human breast cancer cells. Nutr Cancer. 1997;28:236–47.

    Article  CAS  PubMed  Google Scholar 

  39. Wang C, Kurzer MS. Effects of phytoestrogens on DNA synthesis in MCF-7 cells in the presence of estradiol or growth factors. Nutr Cancer. 1998;31:90–100.

    Article  CAS  PubMed  Google Scholar 

  40. Collins-Burow B, Burow M, Duong B, McLachlan J. Estrogenic and antiestrogenic activities of flavonoid phytochemicals through estrogen receptor binding-dependent and -independent mechanisms. Nutr Cancer. 2001;38:229–44.

    Article  Google Scholar 

  41. Zhang S, Yang X, Morris ME. Combined effects of multiple flavonoids on breast cancer resistance protein (ABCG2)-mediated transport. Pharm Res. 2004;21:1263–73.

    Article  CAS  PubMed  Google Scholar 

  42. Stroheker T, Picard K, Lhuguenot JC, Canivenc-Lavier MC, Chagnon MC. Steroid activities comparison of natural and food wrap compounds in human breast cancer cell lines. Food Chem Toxicol. 2004;42:887–97.

    Article  CAS  PubMed  Google Scholar 

  43. Seo HS, DeNardo DG, Jacquot Y, Laïos I, Vidal DS, Zambrana CR, et al. Stimulatory effect of genistein and apigenin on the growth of breast cancer cells correlates with their ability to activate ER alpha. Breast Cancer ResTreat. 2006;99:121–34.

    Article  CAS  Google Scholar 

  44. van Meeuwen JA, Korthagen N, de Jong PC, Piersma AH, van den Berg M. (Anti)estrogenic effects of phytochemicals on human primary mammary fibroblasts, MCF-7 cells and their co-culture. Toxicol Appl Pharmacol. 2007;221:372–83.

    Article  PubMed  CAS  Google Scholar 

  45. Seo HS, Ku JM, Choi HS, Woo JK, Jang BH, Shin YC, et al. Induction of caspase-dependent apoptosis by apigenin by inhibiting STAT3 signaling in HER2-overexpressing MDA-MB-453 breast cancer cells. Anticancer Res. 2014;34:2869–82.

    CAS  PubMed  Google Scholar 

  46. Seo HS, Jo JK, Ku JM, Choi HS, Choi YK, Woo JK, Kim HI, Kang SY, Lee KM, Nam KW, Park N, Jang BH, Shin YC, Ko SG. Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells.Biosci Rep. 2015. https://doi.org/10.1042/BSR20150165

  47. Scherbakov AM, Andreeva OE. Apigenin inhibits growth of breast cancer cells: the role of ERα and HER2/neu. Acta Nat. 2015;7:133–9.

    CAS  Google Scholar 

  48. Huang C, Wei YX, Shen MC, Tu YH, Wang CC, Huang HC. Chrysin, abundant in Morinda citrifolia fruit water-EtOAc extracts, combined with apigenin synergistically induced apoptosis and inhibited migration in human breast and liver cancer cells. J Agric Food Chem. 2016;64:4235–45.

    Article  CAS  PubMed  Google Scholar 

  49. Spoerlein C, Mahal K, Schmidt H, Schobert R. Effects of chrysin, apigenin, genistein and their homoleptic copper(II) complexes on the growth and metastatic potential of cancer cells. J Inorg Biochem. 2013;127:107–15.

    Article  CAS  PubMed  Google Scholar 

  50. Tseng TH, Chien MH, Lin WL, Wen YC, Chow JM, Chen CK, et al. Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21(WAF1/CIP1) expression. Environ Toxicol. 2017;32:434–44.

    Article  CAS  PubMed  Google Scholar 

  51. Coombs MR, Harrison ME, Hoskin DW. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett. 2016;380:424–33.

    Article  CAS  PubMed  Google Scholar 

  52. Wang W, Heideman L, Chung CS, Pelling JC, Koehler KJ, Birt DF. Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines. Mol Carcinog. 2000;28:102–10.

    Article  PubMed  Google Scholar 

  53. Wang W, VanAlstyne PC, Irons KA, Chen S, Stewart JW, Birt DF. Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines. Nut Cancer. 2004;48:106–14.

    Article  CAS  Google Scholar 

  54. Plaumann B, Fritsche M, Rimpler H, Brandner G, Hess R. Flavonoids activate wild-type p53. Oncogene. 1996;13:1605–14.

    CAS  PubMed  Google Scholar 

  55. Takagaki N, Sowa Y, Oki T, Nakanishi R, Yogosawa S, Sakai T. Apigenin induces cell cycle arrest and p21/WAF1 expression in a p53-independent pathway. Int J Oncol. 2005;26:1629–37.

    Google Scholar 

  56. Farah M, Parhar K, Moussavi M, Eivemark S, Salh B. 5, 6-Dichloro-ribifuranosylbenzimidazole- and apigenin-induced sensitization of colon cancer cells to TNF-α-mediated apoptosis. Am J Physiol - Gastrointest Liver Physiol. 2003;285:G919–28.

    Article  CAS  PubMed  Google Scholar 

  57. Van Dross R, Xue Y, Knudson A, Pelling JC. The chemopreventive bioflavonoid apigenin modulates signal transduction pathways in keratinocyte and colon carcinoma cell lines. J Nutr. 2003;133:3800S–4S.

    PubMed  Google Scholar 

  58. Au A, Li B, Wang W, Roy H, Koehler K, Birt D. Effect of dietary apigenin on colonic ornithine decarboxylase activity, aberrant crypt foci formation, and tumorigenesis in different experimental models. Nutr Cancer. 2006;54:243–51.

    Article  CAS  PubMed  Google Scholar 

  59. Svehliková V, Bennett RN, Mellon FA, Needs PW, Piacente S, Kroon PA, et al. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochemistry. 2004;65:2323–32.

    Article  PubMed  CAS  Google Scholar 

  60. Svehlikova V, Wang S, Jakubikova J, Williamson G, Mithen R, Bao Y. Interactions between sulforaphane and apigenin in the induction of UGT1A1 and GSTA1 in CaCo-2 cells. Carcinogenesis. 2004;25:1629–37.

    Article  CAS  PubMed  Google Scholar 

  61. Al-Fayez M, Cai H, Tunstall R, Steward WP, Gescher AJ. Differential modulation of cyclooxygenase-mediated prostaglandin production by the putative cancer chemopreventive flavonoids tricin, apigenin and quercetin. Cancer Chemother Pharmacol. 2006;58:816–25.

    Article  CAS  PubMed  Google Scholar 

  62. Horinaka M, Yoshida T, Shiraishi T, Nakata S, Wakada M, Sakai T. The dietary flavonoid apigenin sensitizes malignant tumor cells to tumor necrosis factor-related apoptosis-inducing ligand. Mol Cancer Ther. 2006;5:945–51.

    Article  CAS  PubMed  Google Scholar 

  63. Chung CS, Jiang Y, Cheng D, Birt DF. Impact of adenomatous polyposis coli (APC) tumor supressor gene in human colon cancer cell lines on cell cycle arrest by apigenin. Mol Carcinog. 2007;46:773–82.

    Article  CAS  PubMed  Google Scholar 

  64. Leonardi T, Vanamala J, Taddeo SS, Davidson LA, Murphy ME, Patil BS, et al. Apigenin and naringenin suppress colon carcinogenesis through the aberrant crypt stage in azoxymethane-treated rats. Exp Biol Med. 2010;235:710–7.

    Article  CAS  Google Scholar 

  65. Zhong Y, Krisanapun C, Lee SH, Nualsanit T, Sams C, Peungvicha P, et al. Molecular targets of apigenin in colorectal cancer cells: involvement of p21, NAG-1 and p53. Eur J Cancer. 2010;46:3365–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Turktekin M, Konac E, Onen HI, Alp E, Yilmaz A, Menevse S. Evaluation of the effects of the flavonoid apigenin on apoptotic pathway gene expression on the colon cancer cell line (HT29). J Med Food. 2011;14:1107–17.

    Article  CAS  PubMed  Google Scholar 

  67. Lee Y, Sung B, Kang YJ, Kim DH, Jang JY, Hwang SY, et al. Apigenin-induced apoptosis is enhanced by inhibition of autophagy formation in HCT116 human colon cancer cells. Int J Oncol. 2014;44:1599–606.

    Article  CAS  PubMed  Google Scholar 

  68. Lefort EC, Blay J. The dietary flavonoid apigenin enhances the activities of the anti-metastatic protein CD26 on human colon carcinoma cells. Clin Exp Metastasis. 2011;28:337–49.

    Article  CAS  PubMed  Google Scholar 

  69. Shao H, Jing K, Mahmoud E, Huang H, Fang X, Yu C. Apigenin sensitizes colon cancer cells to antitumor activity of ABT-263. Mol Cancer Ther. 2013;12:2640–50.

    Article  CAS  PubMed  Google Scholar 

  70. Wang QR, Yao XQ, Wen G, Fan Q, Li YJ, Fu XQ, et al. Apigenin suppresses the growth of colorectal cancer xenografts via phosphorylation and up-regulated FADD expression. Oncol Lett. 2011;2:43–7.

    Article  PubMed  CAS  Google Scholar 

  71. Chunhua L, Donglan L, Xiuqiong F, Lihua Z, Qin F, Yawei L, et al. Apigenin up-regulates transgelin and inhibits invasion and migration of colorectal cancer through decreased phosphorylation of AKT. J Nutr Biochem. 2013;24:1766–75.

    Article  PubMed  CAS  Google Scholar 

  72. Wu K, Yuan L, Xia W. Inhibitory effects of apigenin on the growth of gastric carcinoma SGC-7901 cells. World J Gastroenterol. 2005;11:4461–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang YC. Medicinal plant activity on Helicobacter pylori related diseases. World J Gastroenterol. 2014;20:10368–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Chen J, Chen J, Li Z, Liu C, Yin L. The apoptotic effect of apigenin on human gastric carcinoma cells through mitochondrial signal pathway. Tumour Biol. 2014;35:7719–26.

    Article  CAS  PubMed  Google Scholar 

  75. Eaton EA, Walle UK, Lewis AJ, Hudson T, Wilson AA, Walle T. Flavonoids, potent inhibitors of the human p-form phenolsulfotransferase. Potential role in drug metabolism and chemoprevention. Drug Metab Displays. 1996;24:232–7.

    CAS  Google Scholar 

  76. Wätjen W, Weber N, Lou YJ, Wang ZQ, Chovolou Y, Kampkötter A, et al. Prenylation enhances cytotoxicity of apigenin and liquiritigenin in rat H4IIE hepatoma and C6 glioma cells. Food Chem Toxicol. 2007;45:119–24.

    Article  PubMed  CAS  Google Scholar 

  77. Yee SB, Lee JH, Chung HY, Im KS, Bae SJ, Choi JS, et al. Inhibitory effects of luteolin isolated fromixeris sonchifolia hance on the proliferation of hepg2 human hepatocellular carcinoma cells. Arch Pharm Res. 2003;26:151–6.

    Article  CAS  PubMed  Google Scholar 

  78. Jeyabal PVS, Syed MB, Venkataraman M, Sambandham JK, Sakthisekaran D. Apigenin inhibits oxidative stress-induced macromolecular damage inN-nitrosodiethylamine (NDEA)-induced hepatocellular carcinogenesis in Wistar albino rats. Mol Carcinog. 2005;44:11–20.

    Article  CAS  PubMed  Google Scholar 

  79. Chiang LC, Ng LT, Lin IC, Kuo PL, Lin CC. Anti-proliferative effect of apigenin and its apoptotic induction in human Hep G2 cells. Cancer Lett. 2006;237:207–14.

    Article  CAS  PubMed  Google Scholar 

  80. Choi SI, Jeong CS, Cho SY, Lee YS. Mechanism of apoptosis induced by apigenin in HepG2 human hepatoma cells: involvement of reactive oxygen species generated by NADPH oxidase. Arch Pharm Res. 2007;30:1328–35.

    Article  CAS  PubMed  Google Scholar 

  81. Cai J, Zhao XL, Liu AW, Nian H, Zhang SH. Apigenin inhibits hepatoma cell growth through alteration of gene expression patterns. Phytomedicine. 2011;18:366–73.

    Article  CAS  PubMed  Google Scholar 

  82. Gao AM, Ke ZP, Wang JN, Yang JY, Chen SY, Chen H. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis. 2013;34:1806–14.

    Article  CAS  PubMed  Google Scholar 

  83. Hu XY, Liang JY, Guo XJ, Liu L, Guo YB. 5-Fluorouracil combined with apigenin enhances anticancer activity through mitochondrial membrane potential(ΔΨm)-mediated apoptosis in hepatocellular carcinoma. Clin Exp Pharmacol Physiol. 2015a;42:146–53.

    Article  CAS  PubMed  Google Scholar 

  84. Li S, Yang LJ, Wang P, He YJ, Huang JM, Liu HW, et al. Dietary apigenin potentiates the inhibitory effect of interferon-α on cancer cell viability through inhibition of 26S proteasome-mediated interferon receptor degradation. Food Nutr Res. 2016a;60:31288.

    Article  PubMed  Google Scholar 

  85. Liu LZ, Fang J, Zhou Q, Hu X, Shi X, Jiang BH. Apigenin inhibits expression of vascular endothelial growth factor and angiogenesis in human lung cancer cells: implication of chemoprevention of lung cancer. Mol Pharmacol. 2005;68:635–43.

    CAS  PubMed  Google Scholar 

  86. Watanabe N, Hirayama R, Kubota N. The chemopreventive flavonoid apigenin confers radiosensitizing effect in human tumor cells grown as monolayers and spheroids. J Radiat Res. 2007;48:45–50.

    Article  CAS  PubMed  Google Scholar 

  87. Engelmann C, Blot E, Panis Y, Bauer S, Trochon V, Nagy HJ, et al. Apigenin—strong cytostatic and anti-angiogenic action in vitro contrasted by lack of efficacy in vivo. Phytomedicine. 2002;9:489–95.

    Article  CAS  PubMed  Google Scholar 

  88. Piantelli M, Rossi C, Iezzi M, La Sorda R, Iacobelli S, Alberti S, et al. Flavonoids inhibit melanoma lung metastasis by impairing tumor cells endothelium interactions. J Cell Physiol. 2006;207:23–9.

    Article  CAS  PubMed  Google Scholar 

  89. Lu HF, Chie YJ, Yang MS, Lee CS, Fu JJ, Yang JS, et al. Apigenin induces caspase-dependent apoptosis in human lung cancer A549 cells through Bax- and Bcl-2-triggered mitochondrial pathway. Int J Oncol. 2010;36:1477–84.

    Article  CAS  PubMed  Google Scholar 

  90. Lu HF, Chie YJ, Yang MS, Lu KW, Fu JJ, Yang JS, et al. Apigenin induces apoptosis in human lung cancer H460 cells through caspase- and mitochondria-dependent pathways. Hum Exp Toxicol. 2011;30:1053–61.

    Article  CAS  PubMed  Google Scholar 

  91. Das S, Das J, Samadder A, Boujedaini N, Khuda-Bukhsh AR. Apigenin-induced apoptosis in A375 and A549 cells through selective action and dysfunction of mitochondria. Exp Biol Med. 2012;237:1433–48.

    Article  CAS  Google Scholar 

  92. Bruno A, Siena L, Gerbino S, Ferraro M, Chanez P, Giammanco M, et al. Apigenin affects leptin/leptin receptor pathway and induces cell apoptosis in lung adenocarcinoma cell line. Eur J Cancer. 2011;47:2042–51.

    Article  CAS  PubMed  Google Scholar 

  93. Choudhury D, Ganguli A, Dastidar DG, Acharya BR, Das A, Chakrabarti G. Apigenin shows synergistic anticancer activity with curcumin by binding at different sites of tubulin. Biochimie. 2013;95:1297–309.

    Article  CAS  PubMed  Google Scholar 

  94. Kim KC, Choi EH, Lee C. Axl receptor tyrosine kinase is a novel target of apigenin for the inhibition of cell proliferation. Int J Mol Med. 2014;34:592–8.

    Article  CAS  PubMed  Google Scholar 

  95. Lee YM, Lee G, Oh TI, Kim BM, Shim DW, Lee KH, et al. Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress. Int J Oncol. 2016;48:399–408.

    Article  CAS  PubMed  Google Scholar 

  96. Chen M, Wang X, Zha D, Cai F, Zhang W, He Y, et al. Apigenin potentiates TRAIL therapy of non-small cell lung cancer via upregulating DR4/DR5 expression in a p53-dependent manner. Sci Rep. 2016;6:35468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ujiki MB, Ding XZ, Salabat MR, Bentrem DJ, Golkar L, Milam B, et al. Apigenin inhibits pancreatic cancer cell through G2/M cell cycle arrest. Mol Cancer. 2006;5:76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Lee S, Ryu J, Lee K, Woo S, Park J, Yoo J, et al. Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer. Cancer Lett. 2008a;259:39–49.

    Article  CAS  PubMed  Google Scholar 

  99. Strouch MJ, Milam BM, Melstrom LG, McGill JJ, Salabat MR, Ujiki MB, et al. The flavonoid apigenin potentiates the growth inhibitory effects of gemcitabine and abrogates gemcitabine resistance in human pancreatic cancer cells. Pancreas. 2009;38:409–15.

    Article  CAS  PubMed  Google Scholar 

  100. Wu DG, Yu P, Li JW, Jiang P, Sun J, Wang HZ, et al. Apigenin potentiates the growth inhibitory effects by IKK-β-mediated NF-κB activation in pancreatic cancer cells. Toxicol Lett. 2014;224:157–64.

    Article  CAS  PubMed  Google Scholar 

  101. Melstrom LG, Salabat MR, Ding XZ, Strouch MJ, Grippo PJ, Mirzoeva S, et al. Apigenin down-regulates the hypoxia response genes: HIF-1α,GLUT-1, and VEGF in human pancreatic cancer cells. J Surg Res. 2011;167:173–81.

    Article  CAS  PubMed  Google Scholar 

  102. King JC, Lu QY, Li G, Moro A, Takahashi H, Chen M, et al. Evidence for activation of mutated p53 by apigenin in human pancreatic cancer. Biochim Biophys Acta. 1823;2012:593–604.

    Google Scholar 

  103. Pham H, Chen M, Takahashi H, King J, Reber HA, Hines OJ, et al. Apigenin inhibits NNK-induced focal adhesion kinase activation in pancreatic cancer cells. Pancreas. 2012;41:1306–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Johnson JL, Gonzalez de Mejia E. Interactions between dietary flavonoids apigenin or luteolin and chemotherapeutic drugs to potentiate anti-proliferative effect on human pancreatic cancer cells, in vitro. Food Chem Toxicol. 2013a;60:83–91.

    Article  CAS  PubMed  Google Scholar 

  105. Nelson N, Szekeres K, Iclozan C, Rivera IO, McGill A, Johnson G, et al. Apigenin: selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer. PLoS One. 2017;12:e0170197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Knowles LM, Zigrossi DA, Tauber RA, Hightower C, Milner JA. Flavonoids suppress androgen-independent human prostate tumor proliferation. Nutr Cancer. 2000;38:116–22.

    Article  CAS  PubMed  Google Scholar 

  107. Lee SC, Kuan CY, Yang CC, Yang SD. Bioflavonoids commonly and potently induce tyrosine dephosphorylation/inactivation of oncogenic proline-directed protein kinase FA in human prostate carcinoma cells. Anticancer Res. 1998;18:1117–21.

    CAS  PubMed  Google Scholar 

  108. Morrissey C, O’Neill A, Spengler B, Christoffel V, Fitzpatrick JM, Watson RW. Apigenin drives the production of reactive oxygen species and initiates a mitochondrial mediated cell death pathway in prostate epithelial cells. Prostate. 2005;63:131–42.

    Article  CAS  PubMed  Google Scholar 

  109. Hessenauer A, Montenarh M, Götz C. Inhibition of CK2 activity provokes different responses in hormone-sensitive and hormone-refractory prostate cancer cells. Int J Oncol. 2003;22:1263–70.

    CAS  PubMed  Google Scholar 

  110. Gupta S, Afaq F, Mukhtar H. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Commun. 2001;287:914–20.

    Article  CAS  PubMed  Google Scholar 

  111. Gupta S, Afaq F, Mukhtar H. Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene. 2002;21:3727–38.

    Article  CAS  PubMed  Google Scholar 

  112. Shukla S, Gupta S. Molecular mechanisms for apigenin-induced cell-cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells. Mol Carcinog. 2004a;39:114–26.

    Article  CAS  PubMed  Google Scholar 

  113. Shukla S, Gupta S. Suppression of constitutive and tumor necrosis factor alpha-induced nuclear factor (NF)-kappaB activation and induction of apoptosis by apigenin in human prostate carcinoma PC-3 cells: correlation with down-regulation of NF-kappaB-responsive genes. Clin Cancer Res. 2004b;10:3169–78.

    Article  CAS  PubMed  Google Scholar 

  114. Shukla S, Kanwal R, Shankar E, Datt M, Chance MR, Fu P, et al. Apigenin blocks IKKα activation and suppresses prostate cancer progression. Oncotarget. 2015;6:31216–32.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Shukla S, Mishra A, Fu P, MacLennan G, Resnick M, Gupta S. Up-regulation of insulin-like growth factor binding protein-3 by apigenin leads to growth inhibition and apoptosis of 22Rv1 xenograft in athymic nude mice. FASEB J. 2005;19:2042–4.

    CAS  PubMed  Google Scholar 

  116. Shukla S, Gupta S. Molecular targets for apigenin-induced cell cycle arrest and apoptosis in prostate cancer cell xenograft. Mol Cancer Ther. 2006;5:843–52.

    Article  CAS  PubMed  Google Scholar 

  117. Shukla S, Gupta S. Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells. Cell Cycle. 2007;6:1102–14.

    Article  CAS  PubMed  Google Scholar 

  118. Shukla S, MacLennan GT, Flask CA, Fu P, Mishra A, Resnick MI, et al. Blockade of beta-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice. Cancer Res. 2007;67:6925–35.

    Article  CAS  PubMed  Google Scholar 

  119. Pandey M, Kaur P, Shukla S, Abbas A, Fu P, Gupta S. Plant flavone apigenin inhibits HDAC and remodels chromatin to induce growth arrest and apoptosis in human prostate cancer cells: in vitro and in vivo study. Mol Carcinog. 2012;51:952–62.

    Article  CAS  PubMed  Google Scholar 

  120. Kanwal R, Datt M, Liu X, Gupta S. Dietary flavones as dual inhibitors of DNA methyltransferases and histone methyltransferases. PLoS One. 2016;11:e0162956.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Shukla S, MacLennan GT, Fu P, Gupta S. Apigenin attenuates insulin-like growth factor-I signaling in an autochthonous mouse prostate cancer model. Pharm Res. 2012;29:1506–17.

    Article  CAS  PubMed  Google Scholar 

  122. Shukla S, Bhaskaran N, Babcook MA, Fu P, Maclennan GT, Gupta S. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis. 2014a;35:452–60.

    Article  CAS  PubMed  Google Scholar 

  123. Erdogan S, Turkekul K, Serttas R, Erdogan Z. The natural flavonoid apigenin sensitizes human CD44(+) prostate cancer stem cells to cisplatin therapy. Biomed Pharmacother. 2017;88:210–7.

    Article  CAS  PubMed  Google Scholar 

  124. Shukla S, Fu P, Gupta S. Apigenin induces apoptosis by targeting inhibitor of apoptosis proteins and Ku70-Bax interaction in prostate cancer. Apoptosis. 2014b;19:883–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sharma H, Kanwal R, Bhaskaran N, Gupta S. Plant flavone apigenin binds to nucleic acid bases and reduces oxidative DNA damage in prostate epithelial cells. PLoS One. 2014;9:e91588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Birt DF, Mitchell D, Gold B, Pour P, Pinch HC. Inhibition of ultraviolet light induced skin carcinogenesis in SKH-1 mice by apigenin, a plant flavonoid. Anticancer Res. 1997;17:85–91.

    CAS  PubMed  Google Scholar 

  127. Lepley DM, Li B, Birt DF, Pelling JC. The chemopreventive flavonoid apigenin induces G2/M arrest in keratinocytes. Carcinogenesis. 1996;17:2367–75.

    Article  CAS  PubMed  Google Scholar 

  128. McVean M, Xiao H, Isobe K, Pelling JC. Increase in wild-type p53 stability and transactivational activity by the chemopreventive agent apigenin in keratinocytes. Carcinogenesis. 2000;21:633–9.

    Article  CAS  PubMed  Google Scholar 

  129. Li B, Pinch H, Birt DF. Influence of vehicle, distant topical delivery, and biotransformation on the chemopreventive activity of apigenin, a plant flavonoid, in mouse skin. Pharm Res. 1996;13:1530–4.

    Article  CAS  PubMed  Google Scholar 

  130. Li B, Birt DF. In vivo and in vitro percutaneous absorption of cancer preventive flavonoid apigenin in different vehicles in mouse skin. Pharm Res. 1996;13:1710–5.

    Article  CAS  PubMed  Google Scholar 

  131. Tong X, Van Dross RT, Abu-Yousif A, Morrison AR, Pelling JC. Apigenin prevents UVB-induced cyclooxygenase 2 expression: coupled mRNA stabilization and translational inhibition. Mol Cell Biol. 2006;27:283–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Van Dross RT, Hong X, Essengue S, Fischer SM, Pelling JC. Modulation of UVB-induced and basal cyclooxygenase-2 (COX-2) expression by apigenin in mouse keratinocytes: role of USF transcription factors. Mol Carcinog. 2007;46:303–14.

    Article  PubMed  CAS  Google Scholar 

  133. Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, Brunetti M, et al. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer. 2000;87:595–600.

    Article  CAS  PubMed  Google Scholar 

  134. Abu-Yousif AO, Smith KA, Getsios S, Green KJ, Van Dross RT, Pelling JC. Enhancement of UVB-induced apoptosis by apigenin in human keratinocytes and organotypic keratinocyte cultures. Cancer Res. 2008;68:3057–65.

    Article  CAS  PubMed  Google Scholar 

  135. Hwang YP, Oh KN, Yun HJ, Jeong HG. The flavonoids apigenin and luteolin suppress ultraviolet A-induced matrix metalloproteinase-1 expression via MAPKs and AP-1-dependent signaling in HaCaT cells. J Dermatol Sci. 2011;61:23–31.

    Article  CAS  PubMed  Google Scholar 

  136. Pawlikowska-Pawlęga B, Misiak LE, Zarzyka B, Paduch R, Gawron A, Gruszecki WI. FTIR, (1)H NMR and EPR spectroscopy studies on the interaction of flavone apigenin with dipalmitoylphosphatidylcholine liposomes. Biochim Biophys Acta. 2013;1828:518–27.

    Article  PubMed  CAS  Google Scholar 

  137. Byun S, Park J, Lee E, Lim S, Yu JG, Lee SJ, et al. Src kinase is a direct target of apigenin against UVB-induced skin inflammation. Carcinogenesis. 2013;34:397–405.

    Article  CAS  PubMed  Google Scholar 

  138. Paredes-Gonzalez X, Fuentes F, Su ZY, Kong AN. Apigenin reactivates Nrf2 anti-oxidative stress signaling in mouse skin epidermal JB6 P+ cells through epigenetics modifications. AAPS J. 2014;16:727–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tong X, Mirzoeva S, Veliceasa D, Bridgeman BB, Fitchev P, Cornwell ML, et al. Chemopreventive apigenin controls UVB-induced cutaneous proliferation and angiogenesis through HuR and thrombospondin-1. Oncotarget. 2014;5:11413–27.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kiraly AJ, Soliman E, Jenkins A, Van Dross RT. Apigenin inhibits COX-2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing mice. Prostaglandins Leukot Essent Fatty Acids. 2016;104:44–53.

    Article  CAS  PubMed  Google Scholar 

  141. Bridgeman BB, Wang P, Ye B, Pelling JC, Volpert OV, Tong X. Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: a new implication of skin cancer prevention. Cell Signal. 2016;28:460–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Silvan S, Manoharan S, Baskaran N, Anusuya C, Karthikeyan S, Prabhakar MM. Chemopreventive potential of apigenin in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Eur J Pharmacol. 2011;670:571–7.

    Article  CAS  PubMed  Google Scholar 

  143. Wei H, Tye L, Bresnick E, Birt DF. Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res. 1990;50:499–502.

    CAS  PubMed  Google Scholar 

  144. Mafuvadze B, Liang Y, Besch-Williford C, Zhang X, Hyder SM. Apigenin induces apoptosis and blocks growth of medroxyprogesterone acetate-dependent BT-474 xenograft tumors. Horm Cancer. 2012;3:160–71.

    Article  CAS  PubMed  Google Scholar 

  145. Zheng PW, Chiang LC, Lin CC. Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sci. 2005;76:1367–79.

    Article  CAS  PubMed  Google Scholar 

  146. Czyz J, Madeja Z, Irmer U, Korohoda W, Hülser DF. Flavonoid apigenin inhibits motility and invasiveness of carcinoma cells in vitro. Int J Cancer. 2005;114:12–8.

    Article  CAS  PubMed  Google Scholar 

  147. Wu C, Chen F, Rushing JW, Wang X, Kim HJ, Huang G, et al. Antiproliferative activities of parthenolide and Golden Feverfew extract against three human cancer cell lines. J Med Food. 2006;9:55–61.

    Article  CAS  PubMed  Google Scholar 

  148. Liu J, Cao XC, Xiao Q, Quan MF. Apigenin inhibits HeLa sphere-forming cells through inactivation of casein kinase 2α. Mol Med Rep. 2015a;11:665–9.

    Article  CAS  PubMed  Google Scholar 

  149. Souza RP, Bonfim-Mendonça PS, Gimenes F, Ratti BA, Kaplum V, Bruschi ML, Nakamura CV, Silva SO, Maria-Engler SS, Consolaro ME. Oxidative stress triggered by apigenin induces apoptosis in a comprehensive panel of human cervical cancer-derived cell lines. Oxid Med Cell Longev. 2017. https://doi.org/10.1155/2017/1512745

  150. O’Toole SA, Sheppard BL, Sheils O, O’Leary JJ, Spengler B, Christoffel V. Analysis of DNA in endometrial cancer cells treated with phyto-estrogenic compounds using comparative genomic hybridisation microarrays. Planta Med. 2005;71:435–9.

    Article  PubMed  Google Scholar 

  151. Fang J. Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J. 2005;19:342–53.

    Article  CAS  PubMed  Google Scholar 

  152. Fang J, Zhou Q, Liu LZ, Xia C, Hu X, Shi X, et al. Apigenin inhibits tumor angiogenesis through decreasing HIF-1alpha and VEGF expression. Carcinogenesis. 2007;28:858–6.

    Article  CAS  PubMed  Google Scholar 

  153. Zhu F, Liu XG, Liang NC. Effect of emodin and apigenin on invasion of human ovarian carcinoma HO-8910PM cells in vitro. Ai Zheng. 2003;22:358–62.

    CAS  PubMed  Google Scholar 

  154. Kanerva A, Raki M, Ranki T, Särkioja M, Koponen J, Desmond RA, et al. Chlorpromazine and apigenin reduce adenovirus replication and decrease replication associated toxicity. J Gene Med. 2007;9:3–9.

    Article  CAS  PubMed  Google Scholar 

  155. Hu XW, Meng D, Fang J. Apigenin inhibited migration and invasion of human ovarian cancer A2780 cells through focal adhesion kinase. Carcinogenesis. 2008;29:2369–76.

    Article  CAS  PubMed  Google Scholar 

  156. Li ZD, Hu XW, Wang YT, Fang J. Apigenin inhibits proliferation of ovarian cancer A2780 cells through Id1. FEBS Lett. 2009;583:1999–2003.

    Article  CAS  PubMed  Google Scholar 

  157. Wong IL, Chan KF, Tsang KH, Lam CY, Zhao Y, Chan TH, et al. Modulation of multidrug resistance protein 1 (MRP1/ABCC1)-mediated multidrug resistance by bivalent apigenin homodimers and their derivatives. J Med Chem. 2009;52:5311–22.

    Article  CAS  PubMed  Google Scholar 

  158. Tang AQ, Cao XC, Tian L, He L, Liu F. Apigenin inhibits the self-renewal capacity of human ovarian cancer SKOV3‑derived sphere-forming cells. Mol Med Rep. 2015;11:2221–6.

    Article  CAS  PubMed  Google Scholar 

  159. He J, Xu Q, Wang M, Li C, Qian X, Shi Z, et al. Oral administration of apigenin inhibits metastasis through AKT/P70S6K1/MMP-9 pathway in orthotopic ovarian tumor model. Int J Mol Sci. 2012;13:7271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Suh YA, Jo SY, Lee HY, Lee C. Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells. Int J Oncol. 2015;46:1405–11.

    Article  CAS  PubMed  Google Scholar 

  161. Wang IK, Lin-Shiau SY, Lin JK. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer. 1999;35:1517–25.

    Article  CAS  PubMed  Google Scholar 

  162. Vargo MA, Voss OH, Poustka F, Cardounel AJ, Grotewold E, Doseff AI. Apigenin-induced-apoptosis is mediated by the activation of PKCdelta and caspases in leukemia cells. Biochem Pharmacol. 2006;72:681–92.

    Article  CAS  PubMed  Google Scholar 

  163. Chen D, Daniel KG, Chen MS, Kuhn DJ, Landis-Piwowar KR, Dou QP. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol. 2005a;69:1421–32.

    Article  CAS  PubMed  Google Scholar 

  164. Abaza L, Talorete TP, Yamada P, Kurita Y, Zarrouk M, Isoda H. Induction of growth inhibition and differentiation of human leukemia HL-60 cells by a Tunisian gerboui olive leaf extract. Biosci Biotechnol Biochem. 2007;71:1306–12.

    Article  CAS  PubMed  Google Scholar 

  165. Monasterio A, Urdaci MC, Pinchuk IV, Lopez-Moratalla N, Martinez-Irujo J. Flavonoids induce apoptosis in human leukemia U937 cells through caspase- and caspase-calpain-dependent pathways. J Nutr Cancer. 2004;50:90–100.

    Article  CAS  Google Scholar 

  166. Horvathova K, Novotny L, Vachalkova A. The free radical scavenging activity of four flavonoids determined by the comet assay. Neoplasma. 2003;50:291–5.

    CAS  PubMed  Google Scholar 

  167. Strick R, Strissel PL, Borgers S, Smith SL, Rowley JD. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci U S A. 2000;97:4790–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hashemi M, Nouri Long M, Entezari M, Nafisi S, Nowroozii H. Anti-mutagenic and pro-apoptotic effects of apigenin on human chronic lymphocytic leukemia cells. Acta Med Iran. 2010;48:283–8.

    PubMed  Google Scholar 

  169. Gonzalez-Mejia ME, Voss OH, Murnan EJ, Doseff AI. Apigenin-induced apoptosis of leukemia cells is mediated by a bimodal and differentially regulated residue-specific phosphorylation of heat-shock protein-27. Cell Death Dis. 2010;1:e64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Jayasooriya RG, Kang SH, Kang CH, Choi YH, Moon DO, Hyun JW, et al. Apigenin decreases cell viability and telomerase activity in human leukemia cell lines. Food Chem Toxicol. 2012;50:2605–11.

    Article  CAS  PubMed  Google Scholar 

  171. Nakazaki E, Tsolmon S, Han J, Isoda H. Proteomic study of granulocytic differentiation induced by apigenin 7-glucoside in human promyelocytic leukemia HL-60 cells. Eur J Nutr. 2013;52:25–35.

    Article  CAS  PubMed  Google Scholar 

  172. Budhraja A, Gao N, Zhang Z, Son YO, Cheng S, Wang X, et al. Apigenin induces apoptosis in human leukemia cells and exhibits anti-leukemic activity in vivo. Mol Cancer Ther. 2012;11:132–42.

    Article  CAS  PubMed  Google Scholar 

  173. Isoda H, Motojima H, Onaga S, Samet I, Villareal MO, Han J. Analysis of the erythroid differentiation effect of flavonoid apigenin on K562 human chronic leukemia cells. Chem Biol Interact. 2014;220:269–77.

    Article  CAS  PubMed  Google Scholar 

  174. Sanderson JT, Hordijk J, Denison MS, Springsteel MF, Nantz MH, van den Berg M. Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells. Toxicol Sci. 2004;82:70–9.

    Article  CAS  PubMed  Google Scholar 

  175. Ohno S, Shinoda S, Toyoshima S, Nakazawa H, Makino T, Nakajin S. Effects of flavonoid phytochemicals on cortisol production and on activities of steroidogenic enzymes in human adrenocortical H295R cells. J Steroid Biochem Mol Biol. 1999;80:355–63.

    Article  Google Scholar 

  176. Yin F, Giuliano AE, Van Herle AJ. Signal pathways involved in apigenin inhibition of growth and induction of apoptosis of human anaplastic thyroid cancer cells (ARO). Anticancer Res. 1999;19:4297–303.

    CAS  PubMed  Google Scholar 

  177. Schröder-van der Elst JP, van der Heide D, Romijn JA, Smit JW. Differential effects of natural flavonoids on growth and iodide content in a human Na*/I- symporter-transfected follicular thyroid carcinoma cell line. Eur J Endocrinol. 2004;150:557–64.

    Article  PubMed  Google Scholar 

  178. Kim SH, Kang JG, Kim CS, Ihm SH, Choi MG, Yoo HJ, et al. Apigenin induces c-Myc-mediated apoptosis in FRO anaplastic thyroid carcinoma cells. Mol Cell Endocrinol. 2013;369:130–9.

    Article  CAS  PubMed  Google Scholar 

  179. Lakshmanan A, Doseff AI, Ringel MD, Saji M, Rousset B, Zhang X, et al. Apigenin in combination with Akt inhibition significantly enhances thyrotropin-stimulated radioiodide accumulation in thyroid cells. Thyroid. 2014;24:878–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Zhang L, Cheng X, Gao Y, Zheng J, Xu Q, Sun Y, et al. Apigenin induces autophagic cell death in human papillary thyroid carcinoma BCPAP cells. Food Funct. 2015;6:3464–72.

    Article  CAS  PubMed  Google Scholar 

  181. Lakshmanan A, Scarberry D, Green JA, Zhang X, Selmi-Ruby S, Jhiang SM. Modulation of thyroidal radioiodide uptake by oncological pipeline inhibitors and apigenin. Oncotarget. 2015;6:31792–804.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Torkin R, Lavoie JF, Kaplan DR, Yeger H. Induction of caspase-dependent, p53-mediated apoptosis by apigenin in human neuroblastoma. Mol Cancer Ther. 2005;4:1–11.

    Article  CAS  PubMed  Google Scholar 

  183. Das A, Banik NL, Ray SK. Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids. Int J Cancer. 2006;119:2575–85.

    Article  CAS  PubMed  Google Scholar 

  184. Karmakar S, Davis KA, Choudhury SR, Deeconda A, Banik NL, Ray SK. Bcl-2 inhibitor and apigenin worked synergistically in human malignant neuroblastoma cell lines and increased apoptosis with activation of extrinsic and intrinsic pathways. Biochem Biophys Res Commun. 2009a;388:705–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Mohan N, Banik NL, Ray SK. Combination of N-(4-hydroxyphenyl) retinamide and apigenin suppressed starvation-induced autophagy and promoted apoptosis in malignant neuroblastoma cells. Neurosci Lett. 2011a;502:24–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mohan N, Ai W, Chakrabarti M, Banik NL, Ray SK. KLF4 overexpression and apigenin treatment down regulated anti-apoptotic Bcl-2 proteins and matrix metalloproteinases to control growth of human malignant neuroblastoma SK-N-DZ and IMR-32 cells. Mol Oncol. 2013;7:464–74.

    Article  CAS  PubMed  Google Scholar 

  187. Chakrabarti M, Banik NL, Ray SK. Sequential hTERT knockdown and apigenin treatment inhibited invasion and proliferation and induced apoptosis in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cells. J Mol Neurosci. 2013a;51:187–98.

    Article  CAS  PubMed  Google Scholar 

  188. Chakrabarti M, Banik NL, Ray SK. miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo. Exp Cell Res. 2013b;319:1575–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hossain MM, Banik NL, Ray SK. N-Myc knockdown and apigenin treatment controlled growth of malignant neuroblastoma cells having N-Myc amplification. Gene. 2013;529:27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Amini R, Yazdanparast R, Ghaffari SH. Apigenin modulates the expression levels of pro-inflammatory mediators to reduce the human insulin amyloid-induced oxidant damages in SK-N-MC cells. Hum Exp Toxicol. 2015;34:642–53.

    Article  CAS  PubMed  Google Scholar 

  191. Kim A, Nam YJ, Lee MS, Shin YK, Sohn DS, Lee CS. Apigenin reduces proteasome inhibition-induced neuronal apoptosis by suppressing the cell death process. Neurochem Res. 2016;41:2969–80.

    Article  CAS  PubMed  Google Scholar 

  192. Liu Q, Chen X, Yang G, Min X, Deng M. Apigenin inhibits cell migration through MAPK pathways in human bladder smooth muscle cells. Biocell. 2011;35:71–9.

    CAS  PubMed  Google Scholar 

  193. Zhu Y, Mao Y, Chen H, Lin Y, Hu Z, Wu J, et al. Apigenin promotes apoptosis, inhibits invasion and induces cell cycle arrest of T24 human bladder cancer cells. Cancer Cell Int. 2013a;13:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Shi MD, Shiao CK, Lee YC, Shih YW. Apigenin, a dietary flavonoid, inhibits proliferation of human bladder cancer T-24 cells via blocking cell cycle progression and inducing apoptosis. Cancer Cell Int. 2015;15:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Masuelli L, Benvenuto M, Mattera R, Di Stefano E, Zago E, Taffera G, et al. In vitro and in vivo anti-tumoral effects of the flavonoid apigenin in malignant mesothelioma. Front Pharmacol. 2017;8:373.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Lin CC, Chuang YJ, Yu CC, Yang JS, Lu CC, Chiang JH, et al. Apigenin induces apoptosis through mitochondrial dysfunction in U-2 OS human osteosarcoma cells and inhibits osteosarcoma xenograft tumor growth in vivo. J Agric Food Chem. 2012;60:11395–402.

    Article  CAS  PubMed  Google Scholar 

  197. Bumke-Vogt C, Osterhoff MA, Borchert A, Guzman-Perez V, Sarem Z, Birkenfeld AL, et al. The flavones apigenin and luteolin induce FOXO1 translocation but inhibit gluconeogenic and lipogenic gene expression in human cells. PLoS One. 2014;9:e104321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Liu X, Li L, Lv L, Chen D, Shen L, Xie Z. Apigenin inhibits the proliferation and invasion of osteosarcoma cells by suppressing the Wnt/β-catenin signaling pathway. Oncol Rep. 2015b;34:1035–41.

    Article  CAS  PubMed  Google Scholar 

  199. Heederik D, Kromhout H, Burema J, Biersteker K, Kromhout D. Occupational exposure and 25-year incidence rate of non-specific lung disease: the Zutphen study. Int J Epidemiol. 1990;19:945–52.

    Article  CAS  PubMed  Google Scholar 

  200. Knekt P, Järvinen R, Seppänen R, Hellövaara M, Teppo L, Pukkala E, et al. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol. 1997;146:223–30.

    Article  CAS  PubMed  Google Scholar 

  201. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary flavonoids and cancer risk in the Zutphen Elderly Study. Nutr Cancer. 1994a;22:175–84.

    Article  CAS  PubMed  Google Scholar 

  202. Rossi M, Negri E, Lagiou P, Talamini R, Dal Maso L, Montella M, et al. Flavonoids and ovarian cancer risk: a case-control study in Italy. Int J Cancer. 2008;123:895–8.

    Article  CAS  PubMed  Google Scholar 

  203. Bosetti C, Spertini L, Parpinel M, Gnagnarella P, Lagiou P, Negri E, et al. Flavonoids and breast cancer risk in Italy. Cancer Epidemiol Biomark Prev. 2005;14:805–8.

    Article  CAS  Google Scholar 

  204. Knekt P, Kumpulainen J, Järvinen R, Rissanen H, Heliövaara M, Reunanen A, et al. Flavonoid intake and risk of chronic diseases. Am J Clin Nutr. 2002;76:560–8.

    CAS  PubMed  Google Scholar 

  205. Hoensch H, Groh B, Edler L, Kirch W. Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence. World J Gastroenterol. 2008a;14:2187–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Gates MA, Tworoger SS, Hecht JL, De Vivo I, Rosner B, Hankinson SE. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int J Cancer. 2007;121:2225–32.

    Article  CAS  PubMed  Google Scholar 

  207. Gates MA, Vitonis AF, Tworoger SS, Rosner B, Titus-Ernstoff L, Hankinson SE, et al. Flavonoid intake and ovarian cancer risk in a population-based case-control study. Int J Cancer. 2009;124:1918–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhao M, Ma J, Zhu HY, Zhang XH, Du ZY, Xu YJ, et al. Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90. Mol Cancer. 2011;10:104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Xu Y, Xin Y, Diao Y, Lu C, Fu J, Luo L, et al. Synergistic effects of apigenin and paclitaxel on apoptosis of cancer cells. PLoS One. 2011;6(12):e29169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhu Y, Liu C, Nadiminty N, Lou W, Tummala R, Evans CP, et al. Inhibition of ABCB1 expression overcomes acquired docetaxel resistance in prostate cancer. Mol Cancer Ther. 2013b;12:1829–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Amsterdam JD, Shults J, Soeller I, Mao JJ, Rockwell K, Newberg AB. Chamomile (Matricaria recutita) may provide antidepressant activity in anxious, depressed humans: an exploratory study. Altern Ther Health Med. 2012;18:44–9.

    PubMed  PubMed Central  Google Scholar 

  212. Choi S, Youn J, Kim K, Joo da H, Shin S, Lee J, et al. Apigenin inhibits UVA-induced cytotoxicity in vitro and prevents signs of skin aging in vivo. Int J Mol Med. 2016;38:627–34.

    Article  CAS  PubMed  Google Scholar 

  213. Hollman PC, Katan MB. Health effects and bioavailability of dietary flavonols. Free Radic Res. 1999;31:S75–80.

    Article  CAS  PubMed  Google Scholar 

  214. Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr. 2002;22:19–34.

    Article  CAS  PubMed  Google Scholar 

  215. Chen J, Lin H, Hu M. Metabolism of flavonoids via enteric recycling: role of intestinal disposition. J Pharmacol Exp Ther. 2003;304:1228–35.

    Article  CAS  PubMed  Google Scholar 

  216. Chen J, Wang S, Jia X, Bajimaya S, Lin H, Tam V, et al. Disposition of flavonoids via recycling: comparison of intestinal versus hepatic disposition. Drug Metab Dispos. 2005b;33:1777–84.

    CAS  PubMed  Google Scholar 

  217. Walle UK, Walle T. Induction of human UDP-glucuronosyltransferase UGT1A1 by flavonoids—structural requirements. Drug Metab Dispos. 2002;30:564–9.

    Article  CAS  PubMed  Google Scholar 

  218. Gradolatto A, Basly JP, Berges R, Teyssier C, Chagnon MC, Siess MH, et al. Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration. Drug Metab Dispos. 2005;33:49–54.

    Article  CAS  PubMed  Google Scholar 

  219. Llevot A, Astruc D. Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem Soc Rev. 2012;41:242–57.

    Article  CAS  PubMed  Google Scholar 

  220. Guo C, Zhu Y, Weng Y, Wang S, Guan Y, Wei G, et al. Therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemia/reperfusion injury in rats. J Ethnopharmacol. 2014;151:660–6.

    Article  CAS  PubMed  Google Scholar 

  221. Rajendran I, Dhandapani H, Anantharaman R, Rajaram R. Apigenin mediated gold nanoparticle synthesis and their anti-cancer effect on human epidermoid carcinoma (A431) cells. 2015; https://www.researchgate.net/publication/277604036,10.1039/C5RA04303D.

  222. Das S, Das J, Samadder A, Paul A, Khuda-Bukhsh AR. Strategic formulation of apigenin-loaded PLGA nanoparticles for intracellular trafficking, DNA targeting and improved therapeutic effects in skin melanoma in vitro. Toxicol Lett. 2013;223:124–38.

    Article  CAS  PubMed  Google Scholar 

  223. Ding S, Zhang Z, Song J, Cheng X, Jiang J, Jia X. Enhanced bioavailability of apigenin via preparation of a carbon nanopowder solid dispersion. Int J Nanomedicine. 2014;9:2327–33.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Ding B, Chen H, Wang C, Zhai Y. Preparation and in vitro evaluation of apigenin loaded lipid nanocapsules. J Nanosci Nanotechnol. 2013;13:6546–52.

    Article  CAS  PubMed  Google Scholar 

  225. Cochran DB, Gray LN, Anderson KW, Dziubla TD. Degradable poly(apigenin) polymer inhibits tumor cell adhesion to vascular endothelial cells. J Biomed Mater Res B Appl Biomater. 2016;104:1438–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely apologize to those investigators whose work could not be cited due to space constraints.

Funding

The original work from author’s laboratory outlined in this review was supported by VA Merit Review 1I01BX002494; United States Public Health Service Grants RO1CA108512, R21CA193080, and R03CA186179 and Department of Defense grant W81XWH-15-1-0558 to SG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Gupta.

Ethics declarations

Conflict of Interest

The authors have no competing interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cancer Chemoprevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, E., Goel, A., Gupta, K. et al. Plant Flavone Apigenin: an Emerging Anticancer Agent. Curr Pharmacol Rep 3, 423–446 (2017). https://doi.org/10.1007/s40495-017-0113-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-017-0113-2

Keywords

Navigation