Skip to main content

Advertisement

Log in

Discovering Epimodifications of the Genome, Transcriptome, Proteome, and Metabolome: the Quest for Conquering the Uncharted Epi(c) Territories

  • Epigenetics (ATY Lau, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, we would like to present the overall concepts of “-omes−epi-omes” interactions, i.e., the interactions among the four most noticeable “-omes” (genome, transcriptome, proteome, and metabolome) to the four “epi-omes” (epigenome, epitranscriptome, epiproteome, and epimetabolome) as well as discussing the recently identified epimodifications in humans.

Recent Findings

With the advancement of mass spectrometry and sequencing technologies, novel epimodifications/epi-marks are gradually revealed in recent years. Nowadays, it is becoming clear that all the constituents of the genome, transcriptome, proteome, and even the metabolome can further be modified/decorated with various epi-marks. Given the fact that a variety of modifications can occur in DNA/RNA, proteins, and metabolites, it is possible that an unknown number of epimodifications/epi-marks might exist and are yet to be discovered.

Summary

The ability to decipher and manipulate the epi-omes might present new avenues in drug design for procuring better treatment of various human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Salih E. Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Mass Spectrom Rev. 2005;24(6):828–46. doi:10.1002/mas.20042.

    Article  CAS  PubMed  Google Scholar 

  2. Fischer R, Bowness P, Kessler BM. Two birds with one stone: doing metabolomics with your proteomics kit. Proteomics. 2013;13(23–24):3371–86. doi:10.1002/pmic.201300192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. • Jordan KW, Cheng LL. NMR-based metabolomics approach to target biomarkers for human prostate cancer. Expert Rev Proteomics. 2007;4(3):389–400. doi:10.1586/14789450.4.3.389. An expert review on NMR-based metabolomic approaches to target biomarkers for human prostate cancer.

    Article  CAS  PubMed  Google Scholar 

  4. • Bhat AR, Gupta MK, Krithivasan P, Dhas K, Nair J, Reddy RB, et al. Sample preparation method considerations for integrated transcriptomic and proteomic analysis of tumors. Proteomics Clin Appl. 2017;11(3–4) doi:10.1002/prca.201600100. A technical brief on the choice of the method for optimal extraction of analytes from the clinical tissue specimens for integrated transcriptomic and proteomic analyses.

  5. Carter CW Jr. Histone packing in the nucleosome core particle of chromatin. Proc Natl Acad Sci U S A. 1978;75(8):3649–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cedar H. DNA methylation and gene activity. Cell. 1988;53(1):3–4.

    Article  CAS  PubMed  Google Scholar 

  7. Mahadevan LC, Willis AC, Barratt MJ. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell. 1991;65(5):775–83.

    Article  CAS  PubMed  Google Scholar 

  8. Simpson RT. Structure of chromatin containing extensively acetylated H3 and H4. Cell. 1978;13(4):691–9.

    Article  CAS  PubMed  Google Scholar 

  9. Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep. 2011;1 doi:10.1038/srep00090.

  10. •• Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene expression regulation. Cell. 2017;169(7):1187–200. doi:10.1016/j.cell.2017.05.045. A detailed perspective of the information of the dynamic chemical modifications of coding and non-coding RNA with a focus on introducing the underlying regulatory mechanisms and their biological consequences.

    Article  CAS  PubMed  Google Scholar 

  11. Hamidi T, Singh AK, Chen T. Genetic alterations of DNA methylation machinery in human diseases. Epigenomics. 2015;7(2):247–65. doi:10.2217/epi.14.80.

    Article  CAS  PubMed  Google Scholar 

  12. Hu X, Lu X, Liu R, Ai N, Cao Z, Li Y, et al. Histone cross-talk connects protein phosphatase 1alpha (PP1alpha) and histone deacetylase (HDAC) pathways to regulate the functional transition of bromodomain-containing 4 (BRD4) for inducible gene expression. J Biol Chem. 2014;289(33):23154–67. doi:10.1074/jbc.M114.570812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. •• Lall S. Primers on chromatin. Nat Struct Mol Biol. 2007;14(11):1110–5. doi:10.1038/nsmb1107-1110. A detailed summary of histone-modifying enzymes, histone recognition domains, and chromatin remodeling complexes as well as the functions associated with covalent histone modifications.

    Article  CAS  PubMed  Google Scholar 

  14. Chen K, Zhao BS, He C. Nucleic acid modifications in regulation of gene expression. Cell Chem Biol. 2016;23(1):74–85. doi:10.1016/j.chembiol.2015.11.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seidler J, Zinn N, Boehm ME, Lehmann WD. De novo sequencing of peptides by MS/MS. Proteomics. 2010;10(4):634–49. doi:10.1002/pmic.200900459.

    Article  CAS  PubMed  Google Scholar 

  16. Zheng Y, Huang X, Kelleher NL. Epiproteomics: quantitative analysis of histone marks and codes by mass spectrometry. Curr Opin Chem Biol. 2016;33:142–50. doi:10.1016/j.cbpa.2016.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gilbert WV, Bell TA, Schaening C. Messenger RNA modifications: form, distribution, and function. Science. 2016;352(6292):1408–12. doi:10.1126/science.aad8711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yore MM, Syed I, Moraes-Vieira PM, Zhang T, Herman MA, Homan EA, et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell. 2014;159(2):318–32. doi:10.1016/j.cell.2014.09.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xuan C, Tian QW, Li H, Zhang BB, He GW, Lun LM. Levels of asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, and risk of coronary artery disease: a meta-analysis based on 4713 participants. Eur J Prev Cardiol. 2016;23(5):502–10. doi:10.1177/2047487315586094.

    Article  PubMed  Google Scholar 

  20. Wei Y, Yu L, Bowen J, Gorovsky MA, Allis CD. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell. 1999;97(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  21. Scott A, Song J, Ewing R, Wang Z. Regulation of protein stability of DNA methyltransferase 1 by post-translational modifications. Acta Biochim Biophys Sin Shanghai. 2014;46(3):199–203. doi:10.1093/abbs/gmt146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature. 2017;541(7637):371–5. doi:10.1038/nature21022.

    Article  CAS  PubMed  Google Scholar 

  23. Sudarsan N, Barrick JE, Breaker RR. Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA. 2003;9(6):644–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jurkowska RZ, Jurkowski TP, Jeltsch A. Structure and function of mammalian DNA methyltransferases. Chembiochem. 2011;12(2):206–22. doi:10.1002/cbic.201000195.

    Article  CAS  PubMed  Google Scholar 

  25. Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.

    Article  CAS  PubMed  Google Scholar 

  26. Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502(7472):472–9. doi:10.1038/nature12750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci U S A. 2011;108(9):3630–5. doi:10.1073/pnas.1012311108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. •• van der Wijst MG, van Tilburg AY, Ruiters MH, Rots MG. Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression. Sci Rep. 2017;7(1):177. doi:10.1038/s41598-017-00263-z. The first study which directly addresses the functionality of mtDNA methylation and identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression.

    Article  PubMed  PubMed Central  Google Scholar 

  29. van der Wijst MG, Rots MG. Mitochondrial epigenetics: an overlooked layer of regulation? Trends Genet. 2015;31(7):353–6. doi:10.1016/j.tig.2015.03.009.

    Article  PubMed  Google Scholar 

  30. Heyn H, Esteller M. An adenine code for DNA: a second life for N6-methyladenine. Cell. 2015;161(4):710–3. doi:10.1016/j.cell.2015.04.021.

    Article  CAS  PubMed  Google Scholar 

  31. • Sood AJ, Viner C, Hoffman MM. DNAmod: the DNA modification database. bioRxiv. 2016; doi:10.1101/071712. The first online database to comprehensively catalogue DNA modifications.

  32. Liu N, Pan T. N6-methyladenosine-encoded epitranscriptomics. Nat Struct Mol Biol. 2016;23(2):98–102. doi:10.1038/nsmb.3162.

    Article  CAS  PubMed  Google Scholar 

  33. Song J, Yi C. Chemical modifications to RNA: a new layer of gene expression regulation. ACS Chem Biol. 2017;12(2):316–25. doi:10.1021/acschembio.6b00960.

    Article  CAS  PubMed  Google Scholar 

  34. Shafik A, Schumann U, Evers M, Sibbritt T, Preiss T. The emerging epitranscriptomics of long noncoding RNAs. Biochim Biophys Acta. 2016;1859(1):59–70. doi:10.1016/j.bbagrm.2015.10.019.

    Article  CAS  PubMed  Google Scholar 

  35. Saletore Y, Meyer K, Korlach J, Vilfan ID, Jaffrey S, Mason CE. The birth of the epitranscriptome: deciphering the function of RNA modifications. Genome Biol. 2012;13(10):175. doi:10.1186/gb-2012-13-10-175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. • Li X, Xiong X, Yi C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods. 2016;14(1):23–31. doi:10.1038/nmeth.4110. A special review on the sequencing technologies used to profile the major mRNA modifications in the transcriptome of eukaryotic cells.

    Article  PubMed  Google Scholar 

  37. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18(1):31–42. doi:10.1038/nrm.2016.132.

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Ma S, Yi C. Pseudouridine: the fifth RNA nucleotide with renewed interests. Curr Opin Chem Biol. 2016;33:108–16. doi:10.1016/j.cbpa.2016.06.014.

    Article  CAS  PubMed  Google Scholar 

  39. Pereira-Montecinos C, Valiente-Echeverria F, Soto-Rifo R. Epitranscriptomic regulation of viral replication. Biochim Biophys Acta. 2017;1860(4):460–71. doi:10.1016/j.bbagrm.2017.02.002.

    Article  CAS  PubMed  Google Scholar 

  40. Klungland A, Dahl JA, Greggains G, Fedorcsak P, Filipczyk A. Reversible RNA modifications in meiosis and pluripotency. Nat Methods. 2016;14(1):18–22. doi:10.1038/nmeth.4111.

    Article  PubMed  Google Scholar 

  41. Walters BJ, Mercaldo V, Gillon CJ, Yip M, Neve RL, Boyce FM, et al. The role of the RNA demethylase FTO (fat mass and obesity-associated) and mRNA methylation in hippocampal memory formation. Neuropsychopharmacology. 2017;42(7):1502–10. doi:10.1038/npp.2017.31.

    Article  CAS  PubMed  Google Scholar 

  42. Sun WJ, Li JH, Liu S, Wu J, Zhou H, Qu LH, et al. RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Res. 2016;44(D1):D259–65. doi:10.1093/nar/gkv1036.

    Article  CAS  PubMed  Google Scholar 

  43. Machnicka MA, Milanowska K, Osman Oglou O, Purta E, Kurkowska M, Olchowik A, et al. MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res. 2013;41(Database issue):D262–7. doi:10.1093/nar/gks1007.

    Article  CAS  PubMed  Google Scholar 

  44. • Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, et al. The RNA modification database, RNAMDB: 2011 update. Nucleic Acids Res. 2011;39(Database issue):D195–201. doi:10.1093/nar/gkq1028. A useful online database to comprehensively catalogue RNA modifications.

    Article  CAS  PubMed  Google Scholar 

  45. •• Xu YM, Du JY, Lau AT. Posttranslational modifications of human histone H3: an update. Proteomics. 2014;14(17–18):2047–60. doi:10.1002/pmic.201300435. A detailed perspective of the information of the overall concepts of histone H3 PTMs as well as discussing all the recently identified yet less well-known PTMs on human histone H3.

    Article  PubMed  Google Scholar 

  46. Xie Z, Zhang D, Chung D, Tang Z, Huang H, Dai L, et al. Metabolic regulation of gene expression by histone lysine beta-hydroxybutyrylation. Mol Cell. 2016;62(2):194–206. doi:10.1016/j.molcel.2016.03.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sabari BR, Tang Z, Huang H, Yong-Gonzalez V, Molina H, Kong HE, et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell. 2015;58(2):203–15. doi:10.1016/j.molcel.2015.02.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dai L, Peng C, Montellier E, Lu Z, Chen Y, Ishii H, et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat Chem Biol. 2014;10(5):365–70. doi:10.1038/nchembio.1497.

    Article  CAS  PubMed  Google Scholar 

  49. Xie Z, Dai J, Dai L, Tan M, Cheng Z, Wu Y, et al. Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics. 2012;11(5):100–7. doi:10.1074/mcp.M111.015875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fong JJ, Nguyen BL, Bridger R, Medrano EE, Wells L, Pan S, et al. Beta-N-acetylglucosamine (O-GlcNAc) is a novel regulator of mitosis-specific phosphorylations on histone H3. J Biol Chem. 2012;287(15):12195–203. doi:10.1074/jbc.M111.315804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garcia-Gimenez JL, Olaso G, Hake SB, Bonisch C, Wiedemann SM, Markovic J, et al. Histone h3 glutathionylation in proliferating mammalian cells destabilizes nucleosomal structure. Antioxid Redox Signal. 2013;19(12):1305–20. doi:10.1089/ars.2012.5021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma L, Huang C, Wang XJ, Xin DE, Wang LS, Zou QC, et al. Lysyl oxidase 3 is a dual-specificity enzyme involved in STAT3 deacetylation and deacetylimination modulation. Mol Cell. 2017;65(2):296–309. doi:10.1016/j.molcel.2016.12.002.

    Article  CAS  PubMed  Google Scholar 

  53. •• Kulathu Y, Komander D. Atypical ubiquitylation—the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol. 2012;13(8):508–23. doi:10.1038/nrm3394. A detailed discussion of the mechanistic insights into linking-specific ubiquitin chain assembly, disassembly, and binding by ubiquitin-binding proteins as well as describing the physiological roles of atypical ubiquitin chains from recent studies.

    Article  CAS  PubMed  Google Scholar 

  54. Kravtsova-Ivantsiv Y, Sommer T, Ciechanover A. The lysine48-based polyubiquitin chain proteasomal signal: not a single child anymore. Angew Chem Int Ed Engl. 2013;52(1):192–8. doi:10.1002/anie.201205656.

    Article  CAS  PubMed  Google Scholar 

  55. Sun L, Chen ZJ. The novel functions of ubiquitination in signaling. Curr Opin Cell Biol. 2004;16(2):119–26. doi:10.1016/j.ceb.2004.02.005.

    Article  CAS  PubMed  Google Scholar 

  56. Duncan LM, Piper S, Dodd RB, Saville MK, Sanderson CM, Luzio JP, et al. Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J. 2006;25(8):1635–45. doi:10.1038/sj.emboj.7601056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005;6(11):838–49. doi:10.1038/nrm1761.

    Article  CAS  PubMed  Google Scholar 

  58. Bedford MT, Richard S. Arginine methylation an emerging regulator of protein function. Mol Cell. 2005;18(3):263–72. doi:10.1016/j.molcel.2005.04.003.

    Article  CAS  PubMed  Google Scholar 

  59. Showalter MR, Cajka T, Fiehn O. Epimetabolites: discovering metabolism beyond building and burning. Curr Opin Chem Biol. 2017;36:70–6. doi:10.1016/j.cbpa.2017.01.012.

    Article  CAS  PubMed  Google Scholar 

  60. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457(7231):910–4. doi:10.1038/nature07762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat Cell Biol. 2015;17(12):1523–35. doi:10.1038/ncb3264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Intlekofer AM, Dematteo RG, Venneti S, Finley LW, Lu C, Judkins AR, et al. Hypoxia induces production of L-2-hydroxyglutarate. Cell Metab. 2015;22(2):304–11. doi:10.1016/j.cmet.2015.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Salarinia R, Sahebkar A, Peyvandi M, Mirzaei HR, Jaafari MR, Riahi MM, et al. Epi-drugs and Epi-miRs: moving beyond current cancer therapies. Curr Cancer Drug Targets. 2016;16(9):773–88.

    Article  CAS  PubMed  Google Scholar 

  64. •• Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405. doi:10.1016/j.tibtech.2013.04.004. A brief overview of the therapeutic potential of ZFNs, TALENs, and CRISPR/Cas-based RNA-guide DNA endonucleases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H, et al. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res. 2012;40(14):6725–40. doi:10.1093/nar/gks360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huisman C, van der Wijst MG, Falahi F, Overkamp J, Karsten G, Terpstra MM, et al. Prolonged re-expression of the hypermethylated gene EPB41L3 using artificial transcription factors and epigenetic drugs. Epigenetics. 2015;10(5):384–96. doi:10.1080/15592294.2015.1034415.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen H, Kazemier HG, de Groote ML, Ruiters MH, Xu GL, Rots MG. Induced DNA demethylation by targeting ten-eleven translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res. 2014;42(3):1563–74. doi:10.1093/nar/gkt1019.

    Article  CAS  PubMed  Google Scholar 

  68. • de Groote ML, Verschure PJ, Rots MG. Epigenetic editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes. Nucleic Acids Res. 2012;40(21):10596–613. doi:10.1093/nar/gks863. A survey and summary on epigenetic editing by targeted DNA methylation editors and targeted repressive/activating histone modifying enzymes.

    Article  PubMed  PubMed Central  Google Scholar 

  69. • Yang Y, Fuentes F, Shu L, Wang C, Pung D, Li W, et al. Epigenetic CpG methylation of the promoter and reactivation of the expression of GSTP1 by astaxanthin in human prostate LNCaP cells. AAPS J. 2017;19(2):421–30. doi:10.1208/s12248-016-0016-x. This study demonstrates the role of astaxanthin in restoring the expression of Nrf2 and GSTP1 through epigenetic modification in human prostate LNCaP cells.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang C, Shu L, Kim H, Khor TO, Wu R, Li W, et al. Phenethyl isothiocyanate (PEITC) suppresses prostate cancer cell invasion epigenetically through regulating microRNA-194. Mol Nutr Food Res. 2016;60(6):1427–36. doi:10.1002/mnfr.201500918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guo Y, Shu L, Zhang C, Su ZY, Kong AN. Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1. Biochem Pharmacol. 2015;94(2):69–78. doi:10.1016/j.bcp.2015.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang C, Su ZY, Khor TO, Shu L, Kong AN. Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochem Pharmacol. 2013;85(9):1398–404. doi:10.1016/j.bcp.2013.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dhar S, Kumar A, Rimando AM, Zhang X, Levenson AS. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget. 2015;6(29):27214–26. doi:10.18632/oncotarget.4877.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Borutinskaite V, Virksaite A, Gudelyte G, Navakauskiene R. Green tea polyphenol EGCG causes anti-cancerous epigenetic modulations in acute promyelocytic leukemia cells. Leuk Lymphoma. 2017:1–10. doi:10.1080/10428194.2017.1339881.

  75. Mazzone R, Zwergel C, Mai A, Valente S. Epi-drugs in combination with immunotherapy: a new avenue to improve anticancer efficacy. Clin Epigenetics. 2017;9:59. doi:10.1186/s13148-017-0358-y.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the National Natural Science Foundation of China (Nos. 31170785 and 31271445), the Science and Technology Planning Project of Guangdong Province of China (No. 2016A020215144), the Guangdong Natural Science Foundation of China (No. S2012030006289), “Thousand, hundred, and ten” project of the Department of Education of Guangdong Province (No. 124), the Department of Education, Guangdong Government under the Top-tier University Development Scheme for Research and Control of Infectious Diseases, and the Colleges and Universities Innovation Project of Guangdong Province of China (Nos. 2016KTSCX041 and 2016KTSCX042). We would like to thank members of the Lau And Xu laboratory for critical reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy T. Y. Lau.

Ethics declarations

Conflict of Interest

The authors have declared no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Epigenetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YM., Yu, FY. & Lau, A.T.Y. Discovering Epimodifications of the Genome, Transcriptome, Proteome, and Metabolome: the Quest for Conquering the Uncharted Epi(c) Territories. Curr Pharmacol Rep 3, 286–293 (2017). https://doi.org/10.1007/s40495-017-0103-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-017-0103-4

Keywords

Navigation