Quantitative Biology

, Volume 5, Issue 3, pp 205–209 | Cite as

Multifaceted roles of complementary sequences on circRNA formation

  • Qin Yang
  • Ying Wang
  • Li YangEmail author
Mini Review



Circular RNAs (circRNAs) from back-spliced exon(s) are characterized by the covalently closed loop feature with neither 5′ to 3′ polarity nor polyadenylated tail. By using specific computational approaches that identify reads mapped to back-splice junctions with a reversed genomic orientation, ten thousands of circRNAs have been recently re-identified in various cell lines/tissues and across different species. Increasing lines of evidence suggest that back-splicing is catalyzed by the canonical spliceosomal machinery and modulated by cis-elements and trans-factors.


In this mini-review, we discuss our current understanding of circRNA biogenesis regulation, mainly focusing on the complex regulation of complementary sequences, especially Alus in human, on circRNA formation.


Back-splicing can be significantly facilitated by RNA pair formed by orientation-opposite complementary sequences that juxtapose flanking introns of circularized exon(s). RNA pair formed within individual introns competes with RNA pair formed across flanking introns in the same gene locus, leading to distinct choices for either canonical splicing or back-splicing. Multiple RNA pairs that bracket different circle-forming exons compete for alternative back-splicing selection, resulting in multiple circRNAs generated in a single gene locus.


circRNA circRNA biogenesis back-splicing cis-elements complementary sequences Alu 



We are grateful to L.-L.C. for critical reading of this manuscript. We apologize to authors whose work could not be cited here owing to space/ content limitations. Our work is supported by grants 2014CB910601 from MOST and 91540115 and 31471241 from NSFC.


  1. 1.
    Chen, L. L. (2016) The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol., 17, 205–211CrossRefPubMedGoogle Scholar
  2. 2.
    Chen, L. L. and Yang, L. (2015) Regulation of circRNA biogenesis. RNA Biol., 12, 381–388CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lasda, E. and Parker, R. (2014) Circular RNAs: diversity of form and function. RNA, 20, 1829–1842CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yang, L. (2015) Splicing noncoding RNAs from the inside out. WIREs RNA, 6, 651–660CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., Zhu, S., Yang, L. and Chen, L. L. (2013) Circular intronic long noncoding RNAs. Mol. Cell, 51, 792–806CrossRefPubMedGoogle Scholar
  6. 6.
    Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., Marzluff, W. F. and Sharpless, N. E. (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 19, 141–157CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., et al. (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495, 333–338CrossRefPubMedGoogle Scholar
  8. 8.
    Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L. and Brown, P. O. (2013) Cell-type specific features of circular RNA expression. PLoS Genet., 9, e1003777CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. and Brown, P. O. (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 7, e30733CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang, X. O., Wang, H. B., Zhang, Y., Lu, X., Chen, L. L. and Yang, L. (2014) Complementary sequence-mediated exon circularization. Cell, 159, 134–147CrossRefPubMedGoogle Scholar
  11. 11.
    Yang, L., Duff, M. O., Graveley, B. R., Carmichael, G. G. and Chen, L. L. (2011) Genomewide characterization of nonpolyadenylated RNAs. Genome Biol., 12, R16CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yin, Q. F., Chen, L. L. and Yang, L. (2015) Fractionation of nonpolyadenylated and ribosomal-free RNAs from mammalian cells. Methods Mol. Biol., 1206, 69–80CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang, Y., Yang, L. and Chen, L. L. (2016) Characterization of Circular RNAs. Methods Mol. Biol., 1402, 215–227CrossRefPubMedGoogle Scholar
  14. 14.
    Chen, L. L. and Yang, L. (2017) ALUternative regulation for gene expression. Trends Cell Biol., 27, 480–490CrossRefPubMedGoogle Scholar
  15. 15.
    Hansen, T. B., Veno, M. T., Damgaard, C. K. and Kjems, J. (2016) Comparison of circular RNA prediction tools. Nucleic Acids Res., 44, e58CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang, X. O., Dong, R., Zhang, Y., Zhang, J. L., Luo, Z., Zhang, J., Chen, L. L. and Yang, L. (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res., 26, 1277–1287CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jeck, W. R. and Sharpless, N. E. (2014) Detecting and characterizing circular RNAs. Nat. Biotechnol., 32, 453–461CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dong, R., Ma, X. K., Chen, L. L. and Yang, L. (2016) Increased complexity of circRNA expression during species evolution. RNA Biol., 1–11. doi: 10.1080/15476286.2016.1269999Google Scholar
  19. 19.
    Ivanov, A., Memczak, S., Wyler, E., Torti, F., Porath, H. T., Orejuela, M. R., Piechotta, M., Levanon, E. Y., Landthaler, M., Dieterich, C., et al. (2015) Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep., 10, 170–177CrossRefPubMedGoogle Scholar
  20. 20.
    Rybak-Wolf, A., Stottmeister, C., Glazar, P., Jens, M., Pino, N., Giusti, S., Hanan, M., Behm, M., Bartok, O., Ashwal-Fluss, R., et al. (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell, 58, 870–885CrossRefPubMedGoogle Scholar
  21. 21.
    Westholm, J. O., Miura, P., Olson, S., Shenker, S., Joseph, B., Sanfilippo, P., Celniker, S. E., Graveley, B. R. and Lai, E. C. (2014) Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep., 9, 1966–1980CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bartok, O., Hanan, M., Evantal, N., Memczak, S., Rajewsky, N. and Kadener, S. (2014) circRNA biogenesis competes with premRNA splicing. Mol. Cell, 56, 55–66CrossRefPubMedGoogle Scholar
  23. 23.
    Starke, S., Jost, I., Rossbach, O., Schneider, T., Schreiner, S., Hung, L. H. and Bindereif, A. (2015) Exon circularization requires canonical splice signals. Cell Rep., 10, 103–111CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang, Y., Xue,W., Li, X., Zhang, J., Chen, S., Zhang, J. L., Yang, L. and Chen, L. L. (2016) The biogenesis of nascent circular RNAs. Cell Rep., 15, 611–624CrossRefPubMedGoogle Scholar
  25. 25.
    Liang, D. and Wilusz, J. E. (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev., 28, 2233–2247CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody,M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh,W., et al. (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–921CrossRefPubMedGoogle Scholar
  27. 27.
    Chen, L. L., DeCerbo, J. N. and Carmichael, G. G. (2008) Alu element — mediated gene silencing. EMBO J., 27, 1694–1705CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Guarnerio, J., Bezzi, M., Jeong, J. C., Paffenholz, S. V., Berry, K., Naldini, M. M., Lo-Coco, F., Tay, Y., Beck, A. H. and Pandolfi, P. P. (2016) Oncogenic role of fusion-circRNAs derived from cancerassociated chromosomal translocations. Cell, 165, 289–302CrossRefPubMedGoogle Scholar
  29. 29.
    Conn, S. J., Pillman, K. A., Toubia, J., Conn, V. M., Salmanidis, M., Phillips, C. A., Roslan, S., Schreiber, A.W., Gregory, P. A. and Goodall, G. J. (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell, 160, 1125–1134CrossRefPubMedGoogle Scholar
  30. 30.
    Kramer, M. C., Liang, D., Tatomer, D. C., Gold, B., March, Z. M., Cherry, S. and Wilusz, J. E. (2015) Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev., 29, 2168–2182CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Castello, A., Fischer, B., Eichelbaum, K., Horos, R., Beckmann, B. M., Strein, C., Davey, N. E., Humphreys, D. T., Preiss, T., Steinmetz, L. M., et al. (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 149, 1393–1406CrossRefPubMedGoogle Scholar
  32. 32.
    He, C., Sidoli, S., Warneford-Thomson, R., Tatomer, D. C., Wilusz, J. E., Garcia, B. A. and Bonasio, R. (2016) High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Mol. Cell, 64, 416–430CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Li, X., Liu, C. X., Xue,W., Zhang, Z., Jiang, S., Yin, Q. F., Wei, J., Yao, R.W., Yang, L. and Chen, L. L. (2017) Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol. Cell, Scholar
  34. 34.
    Aktaş, T., Avşar Ilık, İ., Maticzka, D., Bhardwaj, V., Pessoa Rodrigues, C., Mittler, G., Manke, T., Backofen, R. and Akhtar, A. (2017) DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome. Nature, 544, 115–119CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.CAS Key Laboratory of Computational Biology, Collaborative Innovation Center of Genetics and Development, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
  2. 2.School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina

Personalised recommendations