Abstract
Background
Structure profiling experiments provide single-nucleotide information on RNA structure. Recent advances in chemistry combined with application of high-throughput sequencing have enabled structure profiling at transcriptome scale and in living cells, creating unprecedented opportunities for RNA biology. Propelled by these experimental advances, massive data with ever-increasing diversity and complexity have been generated, which give rise to new challenges in interpreting and analyzing these data.
Results
We review current practices in analysis of structure profiling data with emphasis on comparative and integrative analysis as well as highlight emerging questions. Comparative analysis has revealed structural patterns across transcriptomes and has become an integral component of recent profiling studies. Additionally, profiling data can be integrated into traditional structure prediction algorithms to improve prediction accuracy.
Conclusions
To keep pace with experimental developments, methods to facilitate, enhance and refine such analyses are needed. Parallel advances in analysis methodology will complement profiling technologies and help them reach their full potential.

References
Sharp, P. A. (2009) The centrality of RNA. Cell, 136, 577–580
Mortimer, S. A., Kidwell, M. A. and Doudna, J. A. (2014) Insights into RNA structure and function from genome-wide studies. Nat. Rev. Genet., 15, 469–479
He, L. and Hannon, G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet., 5, 522–531
Mercer, T. R., Dinger, M. E. and Mattick, J. S. (2009) Long noncoding RNAs: insights into functions. Nat. Rev. Genet., 10, 155–159
Strobel, E. J., Watters, K. E., Loughrey, D. and Lucks, J. B. (2016) RNA systems biology: uniting functional discoveries and structural tools to understand global roles of RNAs. Curr. Opin. Biotechnol., 39, 182–191
Al-Hashimi, H. M. (2009) Structural biology: aerial view of the HIV genome. Nature, 460, 696–698
Gutell, R. R., Lee, J. C. and Cannone, J. J. (2002) The accuracy of ribosomal RNA comparative structure models. Curr. Opin. Struct. Biol., 12, 301–310
Hofacker, I. L., Fontana,W., Stadler, P. F., Bonhoeffer, L. S., Tacker, M., and Schuster, P. (1994) Fast folding and comparison of RNA secondary structures. Monatsh. Chem., 125, 167–188
Mathews, D. H., Moss, W. N. and Turner, D. H. (2010) Folding and finding RNA secondary structure. Cold Spring Harb. Perspect. Biol., 2, a003665
Ehresmann, C., Baudin, F., Mougel, M., Romby, P., Ebel, J.-P. and Ehresmann, B. (1987) Probing the structure of RNAs in solution. Nucleic Acids Res., 15, 9109–9128
Weeks, K. M. (2010) Advances in RNA structure analysis by chemical probing. Curr. Opin. Struct. Biol., 20, 295–304
Tijerina, P., Mohr, S. and Russell, R. (2007) DMS footprinting of structured RNAs and RNA-protein complexes. Nat. Protoc., 2, 2608–2623
Brow, D. A. and Noller, H. F. (1983) Protection of ribosomal RNA from kethoxal in polyribosomes: implication of specific sites in ribosome function. J. Mol. Biol., 163, 27–46
Tullius, T. D. and Greenbaum, J. A. (2005) Mapping nucleic acid structure by hydroxyl radical cleavage. Curr. Opin. Chem. Biol., 9, 127–134
Singer, B. (1976) All oxygens in nucleic acids react with carcinogenic ethylating agents. Nature, 264, 333–339
Fritz, J. J., Lewin, A., Hauswirth, W., Agarwal, A., Grant, M. and Shaw, L. (2002) Development of hammerhead ribozymes to modulate endogenous gene expression for functional studies. Methods, 28, 276–285
Lindell, M., Romby, P. and Wagner, E. G. H. (2002) Lead(II) as a probe for investigating RNA structure in vivo. RNA, 8, 534–541
Lindell, M., Brännvall, M., Wagner, E. G. H. and Kirsebom, L. A. (2005) RNase P RNA in vivo. RNA, 11, 1348–1354
Knapp, G. (1989) Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol., 180, 192–212
Wilkinson, K. A., Merino, E. J. andWeeks, K. M. (2006) Selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat. Protoc., 1, 1610–1616
Zubradt, M., Gupta, P., Persad, S., Lambowitz, A. M., Weissman, J. S. and Rouskin, S. (2017) DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods, 14, 75–82
Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. and Weeks, K. M. (2015) Selective 2’-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc., 10, 1643–1669
Watters, K. E., Yu, A. M., Strobel, E. J., Settle, A. H. and Lucks, J. B. (2016) Characterizing RNA structures in vitro and in vivo with selective 2’-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Methods, 103, 34–48
Poulsen, L. D., Kielpinski, L. J., Salama, S. R., Krogh, A. and Vinther, J. (2015) SHAPE Selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data. RNA, 21, 1042–1052
Hector, R. D., Burlacu, E., Aitken, S., Le Bihan, T., Tuijtel, M., Zaplatina, A., Cook, A. G. and Granneman, S. (2014) Snapshots of pre-rRNA structural flexibility reveal eukaryotic 40S assembly dynamics at nucleotide resolution. Nucleic Acids Res., 42, 12138–12154
Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. and Weissman, J. S. (2014) Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature, 505, 701–705
Kwok, C. K., Ding, Y., Tang, Y., Assmann, S. M. and Bevilacqua, P. C. (2013) Determination of in vivo RNA structure in low-abundance transcripts. Nat. Commun., 4, 2971
Ding, Y., Tang, Y., Kwok, C. K., Zhang, Y., Bevilacqua, P. C. and Assmann, S. M. (2013) In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature, 505, 696–700
Ding, Y., Kwok, C. K., Tang, Y., Bevilacqua, P. C. and Assmann, S. M. (2015) Genome-wide profiling of in vivo RNA structure at singlenucleotide resolution using structure-seq. Nat. Protoc., 10, 1050–1066
Kertesz, M., Wan, Y., Mazor, E., Rinn, J. L., Nutter, R. C., Chang, H. Y. and Segal, E. (2010) Genome-wide measurement of RNA secondary structure in yeast. Nature, 467, 103–107
Underwood, J. G., Uzilov, A. V., Katzman, S., Onodera, C. S., Mainzer, J. E., Mathews, D. H., Lowe, T. M., Salama, S. R.and Haussler, D. (2010) FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods, 7, 995–1001
Lucks, J. B., Mortimer, S. A., Trapnell, C., Luo, S., Aviran, S., Schroth, G. P., Pachter, L., Doudna, J. A. and Arkin, A. P. (2011) Multiplexed RNA structure characterization with selective 2’-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc. Natl. Acad. Sci. USA, 108, 11063–11068
Loughrey, D., Watters, K. E., Settle, A. H. and Lucks, J. B. (2014) SHAPE-Seq 2.0: systematic optimization and extension of highthroughput chemical probing of RNA secondary structure with next generation sequencing. Nucleic Acids Res, 42, 000
Wan, Y., Qu, K., Ouyang, Z. and Chang, H. Y. (2013) Genome-wide mapping of RNA structure using nuclease digestion and highthroughput sequencing. Nat. Protoc., 8, 849–869
Talkish, J., May, G., Lin, Y., Woolford, J. L. and McManus, C. J. (2014) Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA, 20, 713–720
Incarnato, D., Neri, F., Anselmi, F. and Oliviero, S. (2014) Genomewide profiling of mouse RNA secondary structures reveals key features of the mammalian transcriptome. Genome Biol., 15, 491
Kielpinski, L. J. and Vinther, J. (2014) Massive parallel-sequencingbased hydroxyl radical probing of RNA accessibility. Nucleic Acids Res., 42, e70
Seetin, M. G., Kladwang, W., Bida, J. P. and Das, R. (2014) Massively parallel RNA chemical mapping with a reduced bias MAP-seq protocol. In RNA Folding: Methods and Protocols, 95–117. New York: Humana Press
Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. and Weeks, K. M. (2014) RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods, 11, 959–965
Spitale, R. C., Flynn, R. A., Zhang, Q. C., Crisalli, P., Lee, B., Jung, J.-W., Kuchelmeister, H. Y., Batista, P. J., Torre, E. A., Kool, E. T., et al. (2015) Structural imprints in vivo decode RNA regulatory mechanisms. Nature. 519, 486–490
Kwok, C. K., Sahakyan, A. B. and Balasubramanian, S. (2016) Structural analysis using SHALiPE to reveal RNA G-quadruplex formation in human precursor microRNA. Angew. Chem. Int. Ed. Engl., 55, 8958–8961
Kwok, C. K., Marsico, G., Sahakyan, A. B., Chambers, V. S. and Balasubramanian, S. (2016) rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods, 13, 841–844
Kwok, C. K., Tang, Y., Assmann, S. M. and Bevilacqua, P. C. (2015) The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem. Sci., 40, 221–232
Lu, Z. and Chang, H. Y. (2016) Decoding the RNA structurome. Curr. Opin. Struct. Biol., 36, 142–148
Kwok, C. K. (2016) Dawn of the in vivo RNA structurome and interactome. Biochem. Soc. Trans., 44, 1395–1410
Kubota, M., Chan, D. and Spitale, R. C. (2015) RNA structure: merging chemistry and genomics for a holistic perspective. BioEssays, 37, 1129–1138
Low, J. T. and Weeks, K. M. (2010) SHAPE-directed RNA secondary structure prediction. Methods, 52, 150–158
Lorenz, R., Luntzer, D., Hofacker, I. L., Stadler, P. F. and Wolfinger, M. T. (2015) SHAPE directed RNA folding. Bioinformatics, 32, 145–147
Merino, E. J., Wilkinson, K. A., Coughlan, J. L. and Weeks, K. M. (2005) RNA structure analysis at single nucleotide resolution by selective 2’-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc., 127, 4223–4231
Lavery, R. and Pullman, A. (1984) A new theoretical index of biochemical reactivity combining steric and electrostatic factors: an application to yeast tRNAPhe. Biophys. Chem., 19, 171–181
McGinnis, J. L., Dunkle, J. A., Cate, J. H. and Weeks, K. M. (2012) The mechanisms of RNA SHAPE chemistry. J. Am. Chem. Soc., 134, 6617–6624
Eddy, S. R. (2014) Computational analysis of conserved RNA secondary structure in transcriptomes and genomes. Annu. Rev. Biophys., 43, 433–456
Kutchko, K. M. and Laederach, A. (2016) Transcending the prediction paradigm: novel applications of SHAPE to RNA function and evolution. WIREs RNA, 8, e1374
Aviran, S. and Pachter, L. (2014) Rational experiment design for sequencing-based RNA structure mapping. RNA, 20, 1864–1877
Wan, Y., Qu, K., Zhang, Q. C., Flynn, R. A., Manor, O., Ouyang, Z., Zhang, J., Spitale, R. C., Snyder, M. P., Segal, E., et al. (2014) Landscape and variation of RNA secondary structure across the human transcriptome. Nature, 505, 706–709
Ritz, J., Martin, J. S. and Laederach, A. (2012) Evaluating our ability to predict the structural disruption of RNA by SNPs. BMC Genomics, 13, S6
Watters, K. E., Abbott, T. R. and Lucks, J. B. (2016) Simultaneous characterization of cellular RNA structure and function with in-cell SHAPE-Seq. Nucleic Acids Res., 44, e12
Bai, Y., Tambe, A., Zhou, K. and Doudna, J. A. (2014) RNA-guided assembly of Rev-RRE nuclear export complexes. eLife, 3, e03656
Choudhary, K., Shih, N. P., Deng, F., Ledda, M., Li, B. and Aviran, S. (2016) Metrics for rapid quality control in RNA structure probing experiments. Bioinformatics, 32, 3575–3583
Aviran, S., Lucks, J. B. and Pachter, L. (2011) RNA structure characterization from chemical mapping experiments. In the 49th Annual Allerton Conference on Communication, Control, and Computing, pages 1743–1750
Wan, Y., Kertesz, M., Spitale, R. C., Segal, E. and Chang, H. Y. (2011) Understanding the transcriptome through RNA structure. Nat. Rev. Genet., 12, 641–655
McCaskill, J. S. (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29, 1105–1119
Ding, Y. and Lawrence, C. E. (2003) A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res., 31, 7280–7301
Rogers, E. and Heitsch, C. (2016) New insights from cluster analysis methods for RNA secondary structure prediction. Wiley Interdiscip. Rev. RNA, 7, 278–294
Quarrier, S., Martin, J. S., Davis-Neulander, L., Beauregard, A. and Laederach, A. (2010) Evaluation of the information content of RNA structure mapping data for secondary structure prediction. RNA, 16, 1108–1117
Bullard, J. H., Purdom, E., Hansen, K. D. and Dudoit, S. (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 11, 94
Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. and Gilad, Y. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509–1517
Guo, J. U. and Bartel, D. P. (2016) RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science, 353, aaf5371
Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140
Anders, S., and Huber, W. (2012) Differential expression of RNA-Seq data at the gene level-the DESeq package. Heidelberg: European Molecular Biology Laboratory
Law, C. W., Chen, Y., Shi, W. and Smyth, G. K. (2014) voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol., 15, R29
Leamy, K. A., Assmann, S. M., Mathews, D. H. and Bevilacqua, P. C. (2016) Bridging the gap between in vitro and in vivo RNA folding. Q. Rev. Biophys., 49, e10
Hu, X., Wu, Y., Lu, Z. J. and Yip, K. Y. (2015) Analysis of sequencing data for probing RNA secondary structures and protein- RNA binding in studying posttranscriptional regulations. Brief. Bioinform., 17,1032–1043
Cordero, P., Kladwang, W., VanLang, C. C. and Das, R. (2012) Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. Biochemistry, 51, 7037–7039
Lee, B., Flynn, R. A., Kadina, A., Guo, J. K., Kool, E. T. and Chang, H. Y. (2016) Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA, rna.058784.116
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNASeq. Nat. Methods, 5, 621–628
Sorefan, K., Pais, H., Hall, A. E., Kozomara, A., Griffiths-Jones, S., Moulton, V. and Dalmay, T. (2012) Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence, 3, 4
Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L. and Pachter, L. (2011) Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol., 12, R22
Li, B., Tambe, A., Aviran, S. and Pachter, L. (2016) Prober: a general toolkit for analyzing sequencing-based ‘toeprinting’ assays. bioRxiv, 063107
Aviran, S., Trapnell, C., Lucks, J. B., Mortimer, S. A., Luo, S., Schroth, G. P., Doudna, J. A., Arkin, A. P. and Pachter, L. (2011) Modeling and automation of sequencing-based characterization of RNA structure. Proc. Natl. Acad. Sci. USA, 108, 11069–11074
Selega, A., Sirocchi, C., Iosub, I., Granneman, S. and Sanguinetti, G. (2017) Robust statistical modeling improves sensitivity of highthroughput RNA structure probing experiments. Nat. Methods, 14, 83–89
Deigan, K. E., Li, T. W., Mathews, D. H. and Weeks, K. M. (2009) Accurate SHAPE-directed RNA structure determination. Proc. Natl. Acad. Sci. USA, 106, 97–102
Sloma, M. F. and Mathews, D. H. (2015) Improving RNA secondary structure prediction with structure mapping data. Methods Enzymol., 553, 91–114
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J., and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515
Li, B. and Dewey, C. N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323
Smola, M. J., Calabrese, J. M. and Weeks, K. M. (2015) Detection of RNA-protein interactions in living cells with SHAPE. Biochemistry, 54, 6867–6875
Smola, M. J., Christy, T.W., Inoue, K., Nicholson, C. O., Friedersdorf, M., Keene, J. D., Lee, D. M., Calabrese, J. M. and Weeks, K. M. (2016) SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells. Proc. Natl. Acad. Sci. USA, 113, 10322–10327
Solem, A. C., Halvorsen, M., Ramos, S. B. and Laederach, A. (2015) The potential of the riboSNitch in personalized medicine. Wiley Interdiscip. Rev. RNA, 6, 517–532
Wan, Y., Qu, K., Ouyang, Z., Kertesz, M., Li, J., Tibshirani, R., Makino, D. L., Nutter, R. C., Segal, E. and Chang, H. Y. (2012) Genome-wide measurement of RNA folding energies. Mol. Cell, 48, 169–181
Righetti, F., Nuss, A. M., Twittenhoff, C., Beele, S., Urban, K., Will, S., Bernhart, S. H., Stadler, P. F., Dersch, P. and Narberhaus, F. (2016) Temperature-responsive in vitro RNA structurome of Yersinia pseudotuberculosis. Proc. Natl. Acad. Sci. USA, 113, 7237–7242
Corley, M., Solem, A., Qu, K., Chang, H. Y.and Laederach, A. (2015) Detecting riboSNitches with RNA folding algorithms: a genome-wide benchmark. Nucleic Acids Res., 43,1859–1868
Abdullah, M. B. (1990) On a robust correlation coefficient. Statistician, 39, 455–460
Goodwin, L. D. and Leech, N. L. (2006) Understanding correlation: factors that affect the size of r. J. Exp. Educ., 74, 249–266
Müller, R. and Büttner, P. (1994) A critical discussion of intraclass correlation coefficients. Stat. Med., 13, 2465–2476
Gastwirth, J. L. (1972) The estimation of the Lorenz curve and Gini index. Rev. Econ. Stat., 54, 306–316
Eddy, S. R. and Durbin, R. (1994) RNA sequence analysis using covariance models. Nucleic Acids Res., 22, 2079–2088
Zhang, J.-H., Chung, T. D. and Oldenburg, K. R. (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen., 4, 67–73
Pollom, E., Dang, K. K., Potter, E. L., Gorelick, R. J., Burch, C. L., Weeks, K. M. and Swanstrom, R. (2013) Comparison of SIV and HIV-1 genomic RNA structures reveals impact of sequence evolution on conserved and non-conserved structural motifs. PLoS Pathog., 9, e1003294
Cowell, F. A. and Victoria-Feser, M.-P. (1996) Robustness properties of inequality measures. Econometrica, 64, 77–101
Liang, R., Kierzek, E., Kierzek, R. and Turner, D. H. (2010) Comparisons between chemical mapping and binding to isoenergetic oligonucleotide microarrays reveal unexpected patterns of binding to the Bacillus subtilis RNase P RNA specificity domain. Biochemistry, 49, 8155–8168
Hawkes, E. J., Hennelly, S. P., Novikova, I. V., Irwin, J. A., Dean, C. and Sanbonmatsu, K. Y. (2016) COOLAIR antisense RNAs form evolutionarily conserved elaborate secondary structures. Cell Reports, 16, 3087–3096
Xue, Z., Hennelly, S., Doyle, B., Gulati, A. A., Novikova, I. V., Sanbonmatsu, K. Y. and Boyer, L. A. (2016) A G-rich motif in the lncRNA braveheart interacts with a zinc-finger transcription factor to specify the cardiovascular lineage. Mol. Cell, 64, 37–50
Rice, G. M., Leonard, C.W. andWeeks, K. M. (2014) RNA secondary structure modeling at consistent high accuracy using differential SHAPE. RNA, 20, 846–854
Wu, Y., Shi, B., Ding, X., Liu, T., Hu, X., Yip, K. Y., Yang, Z. R., Mathews, D. H., and Lu. Z. J. (2015) Improved prediction of RNA secondary structure by integrating the free energy model with restraints derived from experimental probing data. Nucleic acids res., 43, 7247–7259
Choudhary, K., Ruan, L., Deng, F., Shih, N. and Aviran, S. (2016) SEQualyzer: interactive tool for quality control and exploratory analysis of high-throughput RNA structural profiling data. Bioinformatics, btw627
Rother, K., Rother, M., Skiba, P. and Bujnicki, J. M. (2014) Automated modeling of RNA 3D structure. In RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods, 395–415. New York: Humana Press
Tabaska, J. E., Cary, R. B., Gabow, H. N. and Stormo, G. D. (1998) An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics, 14, 691–699
Rivas, E. and Eddy, S. R. (1999) A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol., 285, 2053–2068
Lyngsø, R. B. and Pedersen, C. N. (2000) RNA pseudoknot prediction in energy-based models. J. Comput. Biol., 7, 409–427
Ruan, J., Stormo, G. D. and Zhang, W. (2004) An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots. Bioinformatics, 20, 58–66
Reeder, J. and Giegerich, R. (2004) Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics, 5, 104
Ren, J., Rastegari, B., Condon, A. and Hoos, H. H. (2005) HotKnots: heuristic prediction of RNA secondary structures including pseudoknots. RNA, 11, 1494–1504
Cao, S. and Chen, S.-J. (2006) Predicting RNA pseudoknot folding thermodynamics. Nucleic Acids Res., 34, 2634–2652
Reeder, J., Steffen, P. and Giegerich, R. (2007) pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows. Nucleic Acids Res., 35, W320–W324
Sato, K., Kato, Y., Hamada, M., Akutsu, T. and Asai, K. (2011) IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics, 27, i85–i93
Andronescu, M., Condon, A., Turner, D. H. and Mathews, D. H. (2014) The determination of RNA folding nearest neighbor parameters. In RNA Sequence, Structure, and Function: Computational and Bioinformatic Methods, 45–70. New York: Humana Press
Xia, T., SantaLucia, J., Burkard, M. E., Kierzek, R., Schroeder, S. J., Jiao, X., Cox, C., and Turner, D. H. (1998) Thermodynamic parameters for an expanded Nearest-Neighbor model for formation of RNA duplexes withWatson-Crick base pairs. Biochemistry, 14719–14735
Mathews, D. H., Sabina, J., Zuker, M. and Turner, D. H. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol., 288, 911–940
Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978) Algorithms for loop matchings. SIAM J. Appl. Math., 35, 68–82
Waterman, M. S. and Smith, T. F. (1978) RNA secondary structure: a complete mathematical analysis. Math. Biosci., 42, 257–266
Nussinov, R. and Jacobson, A. B. (1980) Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci. USA, 77, 6309–6313
Zuker, M. and Stiegler, P. (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res., 9, 133–148
Zuker, M. and Sankoff, D. (1984) RNA secondary structures and their prediction. Bull. Math. Biol., 46, 591–621
Markham, N. R. and Zuker, M. (2008) UNAFold. In Bioinformatics: Structure, Function and Applications, 3–31. New York: Humana Press
Reuter, J. S. and Mathews, D. H. (2010) RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics, 11, 129
Lorenz, R., Bernhart, S. H., Höner Zu Siederdissen, C., Tafer, H., Flamm, C., Stadler, P. F. and Hofacker, I. L. (2011) ViennaRNA package 2.0. Algorithms Mol. Biol., 6, 26
Eddy, S. R. (2004) How do RNA folding algorithms work? Nat. Biotechnol., 22, 1457–1458
Mathews, D. H. and Turner, D. H. (2006) Prediction of RNA secondary structure by free energy minimization. Curr. Opin. Struct. Biol., 16, 270–278
Shapiro, B. A., Yingling, Y. G., Kasprzak, W. and Bindewald, E. (2007) Bridging the gap in RNA structure prediction. Curr. Opin. Struct. Biol., 17, 157–165
Bai, Y., Dai, X., Harrison, A., Johnston, C. and Chen, M. (2016) Toward a next-generation atlas of RNA secondary structure. Brief. Bioinform., 17, 63–77
Ge, P. and Zhang, S. (2015) Computational analysis of RNA structures with chemical probing data. Methods, 79-80, 60–66
Doshi, K. J., Cannone, J. J., Cobaugh, C. W. and Gutell, R. R. (2004) Evaluation of the suitability of free-energy minimization using nearest-neighbor energy parameters for RNA secondary structure prediction. BMC Bioinformatics, 5, 105
Zuker, M. (1989) On finding all suboptimal foldings of an RNA molecule. Science, 244, 48–52
Darty, K., Denise, A. and Ponty, Y. (2009) VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics, 25, 1974–1975
Deng, F., Ledda, M., Vaziri, S. and Aviran, S. (2016) Data-directed RNA secondary structure prediction using probabilistic modeling. RNA, 22, 1109–1119
McGinnis, J. L., Liu, Q., Lavender, C. A., Devaraj, A., McClory, S. P., Fredrick, K. andWeeks, K. M. (2015) In-cell SHAPE reveals that free 30S ribosome subunits are in the inactive state. Proc. Natl. Acad. Sci. USA, 112, 2425–2430
Mathews, D. H. (2004) Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA, 10, 1178–1190
Bernhart, S. H., Hofacker, I. L. and Stadler, P. F. (2006) Local RNA base pairing probabilities in large sequences. Bioinformatics, 22, 614–615
Ding, Y., Chan, C. Y. and Lawrence, C. E. (2005) RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. RNA, 11, 1157–1166
Do, C. B., Woods, D. A. and Batzoglou, S. (2006) CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics, 22, e90–e98
Lu, Z. J., Gloor, J. W. and Mathews, D. H. (2009) Improved RNA secondary structure prediction by maximizing expected pair accuracy. RNA, 15, 1805–1813
Hamada, M., Sato, K. and Asai, K. (2010) Prediction of RNA secondary structure by maximizing pseudo-expected accuracy. BMC Bioinformatics, 11, 586
Cordero, P. and Das, R. (2015) Rich RNA structure landscapes revealed by mutate-and-map analysis. PLoS Comput. Biol., 11, e1004473
Breaker, R. R. (2012) Riboswitches and the RNA world. Cold Spring Harb. Perspect. Biol., 4, a003566
Parsch, J., Braverman, J. M. and Stephan, W. (2000) Comparative sequence analysis and patterns of covariation in RNA secondary structures. Genetics, 154, 909–921
Gardner, P. P. and Giegerich, R. (2004) A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics, 5, 140
Cannone, J. J., Subramanian, S., Schnare, M. N., Collett, J. R., D’Souza, L. M., Du, Y., Feng, B., Lin, N., Madabusi, L. V., Müller, K. M., et al. (2002) The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics, 3, 2
Rupert, L., Stefan, G. and Gerhard, S. (1999) ConStruct: a tool for thermodynamic controlled prediction of conserved secondary structure. Nucleic Acids Res., 27, 4208–4217
Hofacker, I. L., Fekete, M. and Stadler, P. F. (2002) Secondary structure prediction for aligned RNA sequences. J. Mol. Biol., 319, 1059–1066
Bernhart, S. H., Hofacker, I. L., Will, S., Gruber, A. R. and Stadler, P. F. (2008) RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics, 9, 474
Knudsen, B. and Hein, J. (2003) Pfold: RNA secondary structure prediction using stochastic context-free grammars. Nucleic Acids Res., 31, 3423–3428
Sakakibara, Y., Brown, M., Hughey, R., Mian, I. S., Sjö lander, K., Underwood, R. C. and Haussler, D. (1994) Stochastic context-free grammars for tRNA modeling. Nucleic Acids Res., 22, 5112–5120
Knudsen, B. and Hein, J. (1999) RNA secondary structure prediction using stochastic context-free grammars and evolutionary history. Bioinformatics, 15, 446–454
Sankoff, D. (1985) Simultaneous solution of the RNA folding, alignment and protosequence problems. SIAM J. Appl. Math., 45, 810–825
Havgaard, J. H., Lyngsø, R. B., Stormo, G. D. and Gorodkin, J. (2005) Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics, 21, 1815–1824
Mathews, D. H. and Turner, D. H. (2002) Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J. Mol. Biol., 317, 191–203
Harmanci, A. O., Sharma, G. and Mathews, D. H. (2007) Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign. BMC Bioinformatics, 8, 130
Gorodkin, J., Heyer, L. J. and Stormo, G. D. (1997) Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nucleic Acids Res., 25, 3724–3732
Perriquet, O., Touzet, H. and Dauchet, M. (2003) Finding the common structure shared by two homologous RNAs. Bioinformatics, 19, 108–116
Hofacker, I. L., Bernhart, S. H. and Stadler, P. F. (2004) Alignment of RNA base pairing probability matrices. Bioinformatics, 20, 2222–2227
Hochsmann, M., Toller, T., Giegerich, R. and Kurtz, S. (2003) Local similarity in RNA secondary structures. In Proceedings of the IEEE Bioinformatics Conference, 2003, pages 159–168
Siebert, S. and Backofen, R. (2003) MARNA: a server for multiple alignment of RNAs. In Proceedings of the German Conference on Bioinformatics, pages 135–140
Hajdin, C. E., Bellaousov, S., Huggins,W., Leonard, C. W., Mathews, D. H. and Weeks, K. M. (2013) Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots. Proc. Natl. Acad. Sci. USA, 110, 5498–5503
Tang, Y., Bouvier, E., Kwok, C. K., Ding, Y., Nekrutenko, A., Bevilacqua, P. C. and Assmann, S. M. (2015) StructureFold: genomewide RNA secondary structure mapping and reconstruction in vivo. Bioinformatics, 31, 2668–2675
Watts, J. M., Dang, K. K., Gorelick, R. J., Leonard, C. W., Bess, J. W. Jr, Swanstrom, R., Burch, C. L. andWeeks, K. M. (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature, 460, 711–716
Montaseri, S., Ganjtabesh, M. and Zare-Mirakabad, F. (2016) Evolutionary algorithm for RNA secondary structure prediction based on simulated SHAPE data. PLoS One, 11, e0166965
Lavender, C. A., Lorenz, R., Zhang, G., Tamayo, R., Hofacker, I. L. and Weeks, K. M. (2015) Model-free RNA sequence and structure alignment informed by SHAPE probing reveals a conserved alternate secondary structure for 16S rRNA. PLoS Comput. Biol., 11, e1004126
Novikova, I. V., Dharap, A., Hennelly, S. P. and Sanbonmatsu, K. Y. (2013) 3S: shotgun secondary structure determination of long noncoding RNAs. Methods, 63, 170–177
Lorenz, R., Wolfinger, M. T., Tanzer, A. and Hofacker, I. L. (2016) Predicting RNA secondary structures from sequence and probing data. Methods, 103, 86–98
Zarringhalam, K., Meyer, M. M., Dotu, I., Chuang, J. H. and Clote, P. (2012) Integrating chemical footprinting data into RNA secondary structure prediction. PLoS One, 7, e45160
Washietl, S., Hofacker, I. L., Stadler, P. F. and Kellis, M. (2012) RNA folding with soft constraints: reconciliation of probing data and thermodynamic secondary structure prediction. Nucleic Acids Res., 40, 4261–4272
Ouyang, Z., Snyder, M. P. and Chang, H. Y. (2013) SeqFold: genomescale reconstruction of RNA secondary structure integrating highthroughput sequencing data. Genome Res., 23, 377–387
Sükösd, Z., Knudsen, B., Kjems, J. and Pedersen, C. N. (2012) PPfold 3.0: fast RNA secondary structure prediction using phylogeny and auxiliary data. Bioinformatics, 28, 2691–2692
Sahoo, S., Switnicki, M. P. and Pedersen, J. S. (2016) ProbFold: a probabilistic method for integration of probing data in RNA secondary structure prediction. Bioinformatics, 32, 2626–2635
Kladwang, W., VanLang, C. C., Cordero, P. and Das, R. (2011) A twodimensional mutate-and-map strategy for non-coding RNA structure. Nat. Chem., 3, 954–962
Sükösd, Z., Swenson, M. S., Kjems, J. and Heitsch, C. E. (2013) Evaluating the accuracy of SHAPE-directed RNA secondary structure predictions. Nucleic Acids Res., 41, 2807–2816
Berkowitz, N. D., Silverman, I. M., Childress, D. M., Kazan, H., Wang, L.-S. and Gregory, B. D. (2016) A comprehensive database of high-throughput sequencing-based RNA secondary structure probing data (Structure Surfer). BMC Bioinformatics, 17, 215
Wu, Y., Qu, R., Huang, Y., Shi, B., Liu, M., Li, Y. and Lu, Z. J. (2016) RNAex: an RNA secondary structure prediction server enhanced by high-throughput structure-probing data. Nucleic Acids Res., 44, W294–W301
Norris, M., Cheema, J., Kwok, C. K., Hartley, M., Morris, R. J., Aviran, S., and Ding, Y. (2016) FoldAtlas: a repository for genomewide RNA structure probing data. Bioinformatics. DOI: 10.1093/bioinformatics/btw611
Li, F., Zheng, Q., Vandivier, L. E., Willmann, M. R., Chen, Y. and Gregory, B. D. (2012) Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome. Plant Cell, 24, 4346–4359
Mortimer, S. A., Trapnell, C., Aviran, S., Pachter, L. and Lucks, J. B. (2012) SHAPE-Seq: high-throughput RNA structure analysis. Curr Protoc Chem Biol, 4, 275–297
Incarnato, D., Neri, F., Anselmi, F. and Oliviero, S. (2015) RNA structure framework: automated transcriptome-wide reconstruction of RNA secondary structures from highthroughput structure probing data. Bioinformatics, 32, 459–461
Goecks, J., Nekrutenko, A., Taylor, J. and The Galaxy Team. (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol., 11, R86
König, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D. J., Luscombe, N. M. and Ule, J. (2010) iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol., 17, 909–915
Van Nostrand, E. L., Pratt, G. A., Shishkin, A. A., Gelboin-Burkhart, C., Fang, M. Y., Sundararaman, B., Blue, S. M., Nguyen, T. B., Surka, C., Elkins, K., et al. (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods, 13, 508–514
Squires, J. E., Patel, H. R., Nousch, M., Sibbritt, T., Humphreys, D. T., Parker, B. J., Suter, C.M. and Preiss, T. (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res., 40, 5023–5033
Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon- Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., et al. (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 485, 201–206
Meyer, K. D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C. E. and Jaffrey, S. R. (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell, 149, 1635–1646
Edelheit, S., Schwartz, S., Mumbach, M. R., Wurtzel, O. and Sorek, R. (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet., 9, e1003602
Batista, P. J., Molinie, B., Wang, J., Qu, K., Zhang, J., Li, L., Bouley, D. M., Lujan, E., Haddad, B., Daneshvar, K., et al. (2014) m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell, 15, 707–719
T. M. Carlile, M. F. Rojas-Duran, B. Zinshteyn, H. Shin, K. M. Bartoli, and W. V. Gilbert. (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature, 515, 43–146
Incarnato, D., Anselmi, F., Morandi, E., Neri, F., Maldotti, M., Rapelli, S., Parlato, C., Basile, G. and Oliviero, S. (2016) High-throughput single-base resolution mapping of RNA 2’-O-methylated residues. Nucleic Acids Res., doi: 10.1093/nar/gkw810
Kudla, G., Granneman, S., Hahn, D., Beggs, J. D. and Tollervey, D. (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc. Natl. Acad. Sci. USA, 108, 10010–10015
Ramani, V., Qiu, R. and Shendure, J. (2015) High-throughput determination of RNA structure by proximity ligation. Nat. Biotechnol., 33, 980–984
Sugimoto, Y., Vigilante, A., Darbo, E., Zirra, A., Militti, C., D’Ambrogio, A., Luscombe, N. M. and Ule, J. (2015) hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1. Nature, 519, 491–494
Sharma, E., Sterne-Weiler, T., O’Hanlon, D. and Blencowe, B. J. (2016) Global mapping of human RNA-RNA interactions. Mol. Cell, 62, 618–626
Lu, Z., Zhang, Q. C., Lee, B., Flynn, R. A., Smith, M. A., Robinson, J. T., Davidovich, C., Gooding, A. R., Goodrich, K. J., Mattick, J. S., et al. (2016) RNA duplex map in living cells reveals higher-order transcriptome structure. Cell, 165, 1267–1279
Aw, J. G. A., Shen, Y., Wilm, A., Sun, M., Lim, X. N., Boon, K.-L., Tapsin, S., Chan, Y.-S., Tan, C.-P., Sim, A. Y., et al. (2016) In vivo mapping of eukaryotic RNA interactomes reveals principles of higherorder organization and regulation. Mol. Cell, 62, 603–617
Acknowledgments
This work was supported by the National Institutes of Health (NIH) grant (No. HG006860). We thank Chun Kit Kwok and Aviran lab members — Mirko Ledda, Sana Vaziri, Hua Li and Rob Gysel — for insightful comments during the preparation of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is dedicated to the Special Collection of Synthetic Biology, Aiming for Quantitative Control of Cellular Systems (Eds. Cheemeng Tan and Haiyan Liu).
These authors contributed equally to this work.
Rights and permissions
About this article
Cite this article
Choudhary, K., Deng, F. & Aviran, S. Comparative and integrative analysis of RNA structural profiling data: current practices and emerging questions. Quant Biol 5, 3–24 (2017). https://doi.org/10.1007/s40484-017-0093-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40484-017-0093-6
Keywords
- RNA structure profiling
- high-throughput sequencing
- RNA secondary structure prediction
- chemical structure probing
- SHAPE-Seq