Skip to main content
Log in

Shear-Wave Elastography of the Achilles tendon: reliability analysis and impact of parameters modulating elasticity values

  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Purpose

Shear wave elastography (SWE) has seen many advancements in Achilles tendon evaluation in recent years, yet standardization of this technique is still problematic due to the lack of knowledge regarding the optimal way to perform the examination. The purpose of this study was to evaluate the effects of ankle position, probe frequency and physical effort on the shear modulus of the Achilles tendon, but also to determine the intra and inter-observer reliability of the technique.

Methods

37 healthy volunteers were included; SWE protocol was performed by two examiners. We analyzed the shear modulus of the tendon with the ankle in neutral, maximum dorsiflexion and maximum plantar flexion using two different high frequency probes. Afterwards, the subjects performed a brief physical exercise and SWE measurements were repeated.

Results

The L18-5 probe showed the highest ICC values (ICC = 0.798, 95% CI 0.660–0.880, p < 0.001) when positioned at 2 cm from the calcaneal insertion with the ankle in a neutral state. Conversely, utilizing the same L18-5 probe at 1 cm from the insertion during maximum plantar flexion of the ankle resulted in the lowest ICC (ICC = 0.422, 95% CI 0.032–0.655, p = 0.019). Significant variations in elasticity values were noted among different ankle positions and probe types, while no significant changes in elasticity were observed post-physical exercise.

Conclusion

Ankle position and probe frequency are factors that influence elasticity values of the Achilles tendon. An ankle position between 10 and 20 degrees of plantar flexion is the most suitable for SWE evaluation. However, more research focusing on Achilles tendon SWE is essential due to the challenges encountered in standardizing this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ryu J, Jeong WK (2017) Current status of musculoskeletal application of shear wave elastography. Ultrasonography 36(3):185–197. https://doi.org/10.14366/usg.16053

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fodor D, Rodriguez-Garcia SC, Cantisani V et al (2022) The EFSUMB guidelines and recommendations for musculoskeletal ultrasound—part I: extraarticular pathologies. Ultraschall Med 43:34–57. https://doi.org/10.1055/a-1562-1455

    Article  PubMed  Google Scholar 

  3. Naredo E, Rodriguez-Garcia SC, Terslev L et al (2022) The EFSUMB guidelines and recommendations for musculoskeletal ultrasound—part II: joint pathologies, pediatric applications, and guided procedures. Ultraschall Med 43:252–273. https://doi.org/10.1055/a-1640-9183

    Article  PubMed  Google Scholar 

  4. Dietrich CF, Barr RG, Farrokh A, Dighe M, Hocke M, Jenssen C, Dong Y, Saftoiu A, Havre RF (2017) Strain elastography—how to do it? Ultrasound Int Open. 3(4):E137–E149. https://doi.org/10.1055/s-0043-119412

    Article  PubMed  PubMed Central  Google Scholar 

  5. Doherty JR, Trahey GE, Nightingale KR, Palmeri ML (2013) Acoustic radiation force elasticity imaging in diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 60(4):685–701. https://doi.org/10.1109/TUFFC.2013.2617

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lemme NJ, Li NY, DeFroda SF, Kleiner J, Owens BD (2018) Epidemiology of achilles tendon ruptures in the United States: athletic and nonathletic injuries from 2012 to 2016. Orthop J Sports Med 6(11):2325967118808238. https://doi.org/10.1177/2325967118808238

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tarantino D, Palermi S, Sirico F, Corrado B (2020) Achilles tendon rupture: mechanisms of injury, principles of rehabilitation and return to play. J Funct Morphol Kinesiol 5(4):95. https://doi.org/10.3390/jfmk5040095

    Article  PubMed  PubMed Central  Google Scholar 

  8. Petrescu PH, Izvernariu DA, Iancu C, Dinu GO, Crişan D, Popescu SA, Şirli RL, Nistor BM, Răuția IC, Lăzureanu DC, Dema S, Prejbeanu IR, Sporea I (2016) Evaluation of normal and pathological Achilles tendon by real-time shear wave elastography. Rom J Morphol Embryol 57(2 Suppl):785–790

    PubMed  Google Scholar 

  9. Saha D, Prakash M, Sinha A, Singh T, Dogra S, Sharma A (2022) Role of Shear-Wave Elastography in Achilles tendon in psoriatic arthritis and its correlation with disease severity score, psoriasis area and severity index. Indian J Radiol Imaging 32(2):159–165. https://doi.org/10.1055/s-0042-1743116

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dirrichs T, Schrading S, Gatz M, Tingart M, Kuhl CK, Quack V (2019) Shear Wave Elastography (SWE) of asymptomatic Achilles tendons: a comparison between semiprofessional athletes and the nonathletic general population. Acad Radiol 26(10):1345–1351. https://doi.org/10.1016/j.acra.2018.12.014

    Article  PubMed  Google Scholar 

  11. Schneebeli A, Folli A, Falla D, Barbero M (2021) Reliability of Sonoelastography measurements of lower limb tendon properties: a systematic review. Ultrasound Med Biol 47(5):1131–1150. https://doi.org/10.1016/j.ultrasmedbio.2020.12.018

    Article  PubMed  Google Scholar 

  12. Taljanovic MS, Gimber LH, Becker GW, Latt LD, Klauser AS, Melville DM, Gao L, Witte RS (2017) Shear-Wave Elastography: basic physics and musculoskeletal applications. Radiographics 37(3):855–870. https://doi.org/10.1148/rg.2017160116

    Article  PubMed  Google Scholar 

  13. Săftoiu A, Gilja OH, Sidhu PS et al (2019) The EFSUMB guidelines and recommendations for the clinical practice of elastography in non-hepatic applications: update 2018. Ultraschall Med 40(4):425–453. https://doi.org/10.1055/a-0838-9937

    Article  PubMed  Google Scholar 

  14. Aubry S, Nueffer JP, Tanter M, Becce F, Vidal C, Michel F (2015) Viscoelasticity in Achilles tendonopathy: quantitative assessment by using real-time shear-wave elastography. Radiology 274(3):821–829. https://doi.org/10.1148/radiol.14140434

    Article  PubMed  Google Scholar 

  15. Fu S, Cui L, He X, Sun Y (2016) Elastic characteristics of the normal Achilles tendon assessed by virtual touch imaging quantification shear wave elastography. J Ultrasound Med 35(9):1881–1887. https://doi.org/10.7863/ultra.16.01052

    Article  PubMed  Google Scholar 

  16. Payne C, Watt P, Cercignani M, Webborn N (2018) Reproducibility of shear wave elastography measuresof the Achilles tendon. Skeletal Radiol 47(6):779–784. https://doi.org/10.1007/s00256-017-2846-8

    Article  PubMed  Google Scholar 

  17. Mifsud T, Gatt A, Micallef-Stafrace K, Chockalingam N, Padhiar N (2023) Elastography in the assessment of the Achilles tendon: a systematic review of measurement properties. J Foot Ankle Res 16(1):23. https://doi.org/10.1186/s13047-023-00623-1

    Article  PubMed  PubMed Central  Google Scholar 

  18. Davis LC, Baumer TG, Bey MJ, Holsbeeck MV (2019) Clinical utilization of shear wave elastography in the musculoskeletal system. Ultrasonography 38(1):2–12. https://doi.org/10.14366/usg.18039

    Article  PubMed  Google Scholar 

  19. Pelea MA, Serban O, Badarinza M, Rosca R, Fodor D (2023) Factors influencing the Shear Wave Elastography evaluation of the patellar tendon. Med Ultrason 25(2):145–152. https://doi.org/10.11152/mu-4193

    Article  PubMed  Google Scholar 

  20. Siu WL, Chan CH, Lam CH, Lee CM, Ying M (2016) Sonographic evaluation of the effect of long-term exercise on Achilles tendon stiffness using shear wave elastography. J Sci Med Sport 19(11):883–887. https://doi.org/10.1016/j.jsams.2016.02.013

    Article  PubMed  Google Scholar 

  21. Chiu TC, Ngo HC, Lau LW et al (2016) An investigation of the immediate effect of static stretching on the morphology and stiffness of achilles tendon in dominant and non-dominant legs. PLoS One 27:11. https://doi.org/10.1371/journal.pone.0154443

    Article  CAS  Google Scholar 

  22. Wang CZ, Zheng J, Huang ZP, Xiao Y, Song D, Zeng J, Zheng HR, Zheng RQ (2014) Influence of measurement depth on the stiffness assessment of healthy liver with real-time shear wave elastography. Ultrasound Med Biol 40(3):461–469. https://doi.org/10.1016/j.ultrasmedbio.2013.10.021

    Article  PubMed  Google Scholar 

  23. Chang S, Kim MJ, Kim J, Lee MJ (2013) Variability of shear wave velocity using different frequencies in acoustic radiation force impulse (ARFI) elastography: a phantom and normal liver study. Ultraschall Med 34(3):260–265. https://doi.org/10.1055/s-0032-1313008

    Article  CAS  PubMed  Google Scholar 

  24. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016;15(2):155–63. https://doi.org/10.1016/j.jcm.2016.02.012. (Epub 2016 Mar 31. Erratum in: J Chiropr Med. 2017 Dec;16(4):346. https://doi.org/10.1016/j.jcm.2016.02.012)

  25. Leung WKC, Chu KL, Lai C (2017) Sonographic evaluation of the immediate effects of eccentric heel drop exercise on Achilles tendon and gastrocnemius muscle stiffness using shear wave elastography. PeerJ 19(5):e3592. https://doi.org/10.7717/peerj.3592

    Article  Google Scholar 

  26. Chiu TC, Ngo HC, Lau LW, Leung KW, Lo MH, Yu HF, Ying M (2016) An investigation of the immediate effect of static stretching on the morphology and stiffness of achilles tendon in dominant and non-dominant legs. PLoS One 11(4):e0154443. https://doi.org/10.1371/journal.pone.0154443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aubry S, Risson JR, Kastler A, Barbier-Brion B, Siliman G, Runge M, Kastler B (2013) Biomechanical properties of the calcaneal tendon in vivo assessed by transient shear wave elastography. Skeletal Radiol 42(8):1143–1150. https://doi.org/10.1007/s00256-013-1649-9

    Article  PubMed  Google Scholar 

  28. Bortolotto C, Turpini E, Felisaz P et al (2017) Median nerve evaluation by shear wave elastosonography: impact of “bone-proximity” hardening artifacts and interobserver agreement. J Ultrasound 20(4):293–299. https://doi.org/10.1007/s40477-017-0267-0

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen XM, Cui LG, He P, Shen WW, Qian YJ, Wang JR (2013) Shear wave elastographic characterization of normal and torn achilles tendons: a pilot study. J Ultrasound Med 32(3):449–455. https://doi.org/10.7863/jum.2013.32.3.449

    Article  PubMed  Google Scholar 

  30. Schneebeli A, Fiorina I, Bortolotto C, Barbero M, Falla D, Cescon C, Raciti MV, Tarantino F, Preda L (2021) Shear wave and strain sonoelastography for the evaluation of the Achilles tendon during isometric contractions. Insights Imaging 12(1):26. https://doi.org/10.1186/s13244-021-00974-y

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chino K, Takahashi H (2015) The association of muscle and tendon elasticity with passive joint stiffness: In vivo measurements using ultrasound shear wave elastography. Clin Biomech (Bristol, Avon) 30(10):1230–1235. https://doi.org/10.1016/j.clinbiomech.2015.07.014

    Article  PubMed  Google Scholar 

  32. Arda K, Ciledag N, Aktas E, Aribas BK, Köse K (2011) Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. AJR Am J Roentgenol 197(3):532–536. https://doi.org/10.2214/ajr.10.5449

    Article  PubMed  Google Scholar 

  33. Davis WL Jr, Singerman R, Labropoulos PA, Victoroff B (1999) Effect of ankle and knee position on tension in the Achilles tendon. Foot Ankle Int 20(2):126–131. https://doi.org/10.1177/107110079902000210

    Article  PubMed  Google Scholar 

  34. Benjamin M, Toumi H, Ralphs JR, Bydder G, Best TM, Milz S (2006) Where tendons and ligaments meet bone: attachment sites ('entheses’) in relation to exercise and/or mechanical load. J Anat 208(4):471–490. https://doi.org/10.1111/j.1469-7580.2006.00540.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Karjalainen PT, Soila K, Aronen HJ, Pihlajamäki HK, Tynninen O, Paavonen T, Tirman PF (2000) MR imaging of overuse injuries of the Achilles tendon. AJR Am J Roentgenol 175(1):251–260. https://doi.org/10.2214/ajr.175.1.1750251

    Article  CAS  PubMed  Google Scholar 

  36. Nicholson CW, Berlet GC, Lee TH (2007) Prediction of the success of nonoperative treatment of insertional Achilles tendinosis based on MRI. Foot Ankle Int 28(4):472–477. https://doi.org/10.3113/fai.2007.0472

    Article  PubMed  Google Scholar 

  37. Wang JH (2006) Mechanobiology of tendon. J Biomech 39(9):1563–1582. https://doi.org/10.1016/j.jbiomech.2005.05.011

    Article  PubMed  Google Scholar 

  38. Bohm S, Mersmann F, Marzilger R, Schroll A, Arampatzis A (2015) Asymmetry of Achilles tendon mechanical and morphological properties between both legs. Scand J Med Sci Sports 25(1):e124–e132. https://doi.org/10.1111/sms.12242

    Article  CAS  PubMed  Google Scholar 

  39. Chang TT, Li Z, Wang XQ, Zhang ZJ (2020) Stiffness of the gastrocnemius-Achilles tendon complex between amateur basketball players and the non-athletic general population. Front Physiol 10(11):606706. https://doi.org/10.3389/fphys.2020.606706

    Article  Google Scholar 

  40. Obuchowicz R, Ambrozinski L, Kohut P (2020) Influence of load and transducer bandwidth on the repeatability of in vivo tendon stiffness evaluation using shear wave elastography. J Diagn Med Sonogr 36(5):409–420. https://doi.org/10.1177/8756479320928999

    Article  Google Scholar 

  41. Obst SJ, Barrett RS, Newsham-West R (2013) Immediate effect of exercise on achilles tendon properties: systematic review. Med Sci Sports Exerc 45(8):1534–1544. https://doi.org/10.1249/mss.0b013e318289d821

    Article  PubMed  Google Scholar 

  42. Bohm S, Mersmann F, Arampatzis A (2015) Human tendon adaptation in response to mechanical loading: a systematic review and meta-analysis of exercise intervention studies on healthy adults. Sports Med Open 1(1):7. https://doi.org/10.1186/s40798-015-0009-9

    Article  PubMed  PubMed Central  Google Scholar 

  43. Baxter JR, Corrigan P, Hullfish TJ, O’Rourke P, Silbernagel KG (2021) Exercise progression to incrementally load the achilles tendon. Med Sci Sports Exerc 53(1):124–130. https://doi.org/10.1249/mss.0000000000002459

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Mr. George Dobre from Pondera Medical for his continuous support and to all the participants who gave their time and patience for the completion of this study.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Michael-Andrei Pelea, Oana Serban, Maria Badarinza and Roxana Rosca. The first draft of the manuscript was written by Michael Andrei Pelea, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daniela Fodor.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the local Ethics Committee (nr.100/03.05.2022).

Consent to participate

Written informed consent was obtained from all individual participants included in the study.

Consent to publish

The authors affirm that human research participants provided written informed consent for publication of the images in Figure(s) 1a, 1b, 1c and 1d.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 199 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelea, MA., Serban, O., Badarinza, M. et al. Shear-Wave Elastography of the Achilles tendon: reliability analysis and impact of parameters modulating elasticity values. J Ultrasound (2024). https://doi.org/10.1007/s40477-024-00877-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40477-024-00877-w

Keywords

Navigation