Skip to main content

Advertisement

Log in

Impact of graphene oxide nanosheets and polymethyl methacrylate on nano/hybrid-based restoration dental filler composites: ultrasound behavior and antibacterial activity

  • Published:
Journal of Ultrasound Aims and scope Submit manuscript

Abstract

Purpose

Graphene-polymer nanocomposites significantly impact dental filler and antibacterial applications. The study aims to overcome some problems dental filers present and improve their properties and antibacterial activity. Synthesis graphene oxide (GO) and poly (methyl methacrylate) (PMMA) were used to reinforce two types of commercial hybrid/nano-dental fillings.

Methods

Developed acoustic-solution-sonication-casting methods were applied to fabricate the new graphene-polymer-dental filler nanocomposites. The structure, morphology, rheological and mechanical properties, and antibacterial of the newly fabricated filling-PMMA/ GO nanocomposites were investigated.

Results

Fourier transform infrared (FTIR) showed a significant interaction between the filling and the additional materials. The X-ray diffraction (XRD) analysis revealed a considerable change in crystalline behavior. Optical microscope (OM) with field emission scanning electron microscopy (FESEM) pictures demonstrated a substantial change in the morphology of the samples with a homogeneous and fine dispersion of the nanomaterials in the filler matrix. Multi-frequency ultrasound mechanical properties measured the ultrasonic velocity, absorption coefficient, compressibility, bulk modulus, and other mechanical properties that notably enhanced after GO contributed up to 325% of the ultrasonic absorption coefficient compared with hybrid/nano-fillers. Rheological properties were measured as viscosity, absorption coefficient, and specific viscosity, which significantly improved after adding PMMA and incorporating GO up to 57% of the viscosity, compared with hybrid/nano-fillers. The inhibition zone of moth bacteria, such as Enterococcus faecalis and E. staph bacteria, improved after the contribution of GO nanosheets up to 46%.

Conclusion

Nanofillers nanocomposites presented better properties and inhabitances zone diameter of antibacterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

We confirm that all data and materials are authentic and available.

References

  1. Edwards PC, Kanjirath P (2010) Recognition and management of common acute conditions of the oral cavity resulting from tooth decay, periodontal disease, and trauma: an update for the family physician. J Am Board Fam Med 23:285–294. https://doi.org/10.3122/jabfm.2010.03.090023

    Article  PubMed  Google Scholar 

  2. Kilian M, Chapple ILC, Hannig M, Marsh PD, Meuric V, Pedersen AML, Tonetti MS, Wade WG, Zaura E (2016) The oral microbiome—an update for oral healthcare professionals. Br Dent J 221:657–666. https://doi.org/10.1038/sj.bdj.2016.865

    Article  CAS  PubMed  Google Scholar 

  3. Kane SF (2017) The effects of oral health on systemic health. Gen Dent 65:30–34

    PubMed  Google Scholar 

  4. Yadav AR, Mohite SK, Magdum CS (2020) Preparation and evaluation of antibacterial herbal mouthwash against oral pathogens. Asian J Res Pharm Sci 10:149. https://doi.org/10.5958/2231-5659.2020.00028.4

    Article  Google Scholar 

  5. Metwalli KH, Khan SA, Krom BP, Jabra-Rizk MA (2013) Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation. PLoS Pathog 9:e1003616. https://doi.org/10.1371/journal.ppat.1003616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Loesche WJ (1996) Microbiology of dental decay and periodontal disease. In: Baron S (ed) Medical microbiology, 4th ed., Chap. 99, University of Texas Medical Branch at Galveston, Galveston (TX). Available from: https://www.ncbi.nlm.nih.gov/books/NBK8259/?report=printable

  7. Nayak M (2020) Effect of modern (Junk) food in dental caries. Indian J Forensic Med Toxicol 14:9194–9197. https://doi.org/10.37506/ijfmt.v14i4.13183

    Article  Google Scholar 

  8. Kenawy E-R, Khattab SA, Azaam MM (2019) Synthesis and antibacterial activity of schiff base compounds based on poloxamine. Delta J Sci 40:69–77. https://doi.org/10.21608/djs.2019.139205

    Article  Google Scholar 

  9. Sánchez Vásquez NL (2019) Control de la placa dental en pacientes con ortodoncia. Una revisión de la literatura. Kiru 16:92–96. https://doi.org/10.24265/kiru.2019.v16n2.06

    Article  Google Scholar 

  10. Zhou W, Peng X, Zhou X, Weir MD, Melo MAS, Tay FR, Imazato S, Oates TW, Cheng L, Xu HHK (2020) In vitro evaluation of composite containing DMAHDM and calcium phosphate nanoparticles on recurrent caries inhibition at bovine enamel-restoration margins. Dent Mater 36:1343–1355. https://doi.org/10.1016/j.dental.2020.07.007

    Article  CAS  PubMed  Google Scholar 

  11. Jabbari Shiadeh SM, Pormohammad A, Hashemi A, Lak P (2019) Global prevalence of antibiotic resistance in blood-isolated enterococcus faecalis and enterococcus faecium: a systematic review and meta-analysis. Infect Drug Resist 12:2713–2725. https://doi.org/10.2147/IDR.S206084

    Article  PubMed  PubMed Central  Google Scholar 

  12. Abdurrahman G, Bröker BM (2022) Correction to: Staphylococcus aureus and its proteins. Chronic rhinosinusitis. Springer, Cham, pp C1–C1. https://doi.org/10.1007/978-981-16-0784-4_55

    Chapter  Google Scholar 

  13. Ge Z, Yang L, Xiao F, Wu Y, Yu T, Chen J, Lin J, Zhang Y (2018) Graphene family nanomaterials: properties and potential applications in dentistry. Int J Biomater. https://doi.org/10.1155/2018/1539678

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jawad ED, Khudhair SH, Ali HN (2011) A thermodynamic study of adsorption of some days on Iraqi Bentoniet modified clay. Eur J Sci Res 60:63–70

    Google Scholar 

  15. Atai M, Nekoomanesh M, Hashemi SA, Amani S (2004) Physical and mechanical properties of an experimental dental composite based on a new monomer. Dent Mater 20:663–668. https://doi.org/10.1016/j.dental.2003.08.008

    Article  CAS  PubMed  Google Scholar 

  16. Miletic V (2018) Development of dental composites: dental composite materials for direct restorations. Springer International Publishing AG, Springer Cham, pp 3–9. https://doi.org/10.1007/978-3-319-60961-4

  17. Al-Owaedi OA, Khalil TT, Karim SA, Said MH, Al-Bermany E, Taha DN (2020) The promising barrier: theoretical investigation. Syst Rev Pharm 11:110–115. https://doi.org/10.31838/srp.2020.5.18

    Article  CAS  Google Scholar 

  18. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323. https://doi.org/10.1021/nn101097v

    Article  CAS  PubMed  Google Scholar 

  19. Şuhani MF, Băciutcedil G, Băciutcedil M, Şuhani R, Bran S (2018) Current perspectives regarding the application and incorporation of silver nanoparticles into dental biomaterials. Clujul Med 91:274–279. https://doi.org/10.15386/cjmed-935

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kassardjian V, Andiappan M, Creugers NHJ, Bartlett D (2020) A systematic review of interventions after restoring the occluding surfaces of anterior and posterior teeth that are affected by tooth wear with filled resin composites. J Dent 99:103388. https://doi.org/10.1016/j.jdent.2020.103388

    Article  PubMed  Google Scholar 

  21. Abdulridha AR, Al-Bermany E, Hashim FS, Omran Alkhayatt AH (2020) Synthesis and characterization and pelletization pressure effect on the properties of Bi1.7Pb0.3Sr2W0.2 Ca2Cu3 O10+δ superconductor system. Intermetallics 127:106967. https://doi.org/10.1016/j.intermet.2020.106967

    Article  CAS  Google Scholar 

  22. Yingchao Z, Haihuan G, Dan F, Tengjiaozi F, Danfeng C, Zuosen S, Song Z, Zhanchen C (2015) New strategy for overcoming microleakage: an elastic layer for dental caries restoration. J Mater Chem B 3:4401–4405. https://doi.org/10.1039/c5tb00432b

    Article  PubMed  Google Scholar 

  23. Beyth N, Farah S, Domb AJ, Weiss EI (2014) Antibacterial dental resin composites. React Funct Polym 75:81–88. https://doi.org/10.1016/j.reactfunctpolym.2013.11.011

    Article  CAS  Google Scholar 

  24. Al-Bermany E, Chen B (2023) Effect of the functional groups of polymers on their adsorption behavior on graphene oxide nanosheets. Macromol Chem Phys 224:2300101. https://doi.org/10.1002/macp.202300101

    Article  CAS  Google Scholar 

  25. Kadhim MA, Al-Bermany E (2021) New fabricated PMMA-PVA/graphene oxide nanocomposites: structure, optical properties and application. J Compos Mater 55:2793–2806. https://doi.org/10.1177/0021998321995912

    Article  CAS  Google Scholar 

  26. Abdali K (2022) Synthesis, characterization and USW sensor of PEO/PMMA/PVP doped with zirconium dioxide nanoparticles. Trans Electr Electron Mater 23:563–568. https://doi.org/10.1007/s42341-022-00388-7

    Article  Google Scholar 

  27. Abdul Kadhim M, Al-Bermany E (2020) Enhance the Electrical properties of the novel fabricated PMMA-PVA/ graphene based nanocomposites. J Green Eng 10:3465–3483

    Google Scholar 

  28. Torabi AR, Shahbaz S, Cicero S, Ayatollahi MR (2022) Fracture testing and estimation of critical loads in a PMMA-based dental material with nonlinear behavior in the presence of notches. Theor Appl Fract Mech 118:103282. https://doi.org/10.1016/j.tafmec.2022.103282

    Article  CAS  Google Scholar 

  29. Alawi AI, Al-Bermany E (2023) Newly fabricated ternary PAAm-PVA-PVP blend polymer doped by SiO2: absorption and dielectric characteristics for solar cell applications and antibacterial activity. SILICON. https://doi.org/10.1007/s12633-023-02477-5

    Article  Google Scholar 

  30. Abodood AAF, Abdali K, Mousa Al-Ogaili AO, Al-Bermany E, Abass KH (2023) Effect of molar concentration and solvent type on linear and NLO properties of aurintricarboxylic (ATA) organic dye for image sensor and optical limiter applications. Int J Nanosci. https://doi.org/10.1142/S0219581X2350014X

    Article  Google Scholar 

  31. Padovani GC, Feitosa VP, Sauro S, Tay FR, Durán G, Paula AJ, Durán N (2015) Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends Biotechnol 33:621–636. https://doi.org/10.1016/j.tibtech.2015.09.005

    Article  CAS  PubMed  Google Scholar 

  32. Al-Bermany E, Mekhalif AT, Banimuslem HA, Abdali K, Sabri MM (2023) Effect of green synthesis bimetallic Ag@SiO2 core–shell nanoparticles on absorption behavior and electrical properties of PVA-PEO nanocomposites for optoelectronic applications. SILICON. https://doi.org/10.1007/s12633-023-02332-7

    Article  PubMed Central  Google Scholar 

  33. Abdali K, Al-Bermany E, Abass KH (2023) Impact the silver nanoparticles on properties of new fabricated polyvinyl alcohol- polyacrylamide- polyacrylic acid nanocomposites films for optoelectronics and radiation pollution applications. J Polym Res 30:138. https://doi.org/10.1007/s10965-023-03514-y

    Article  CAS  Google Scholar 

  34. Radhi A, Mohamad D, Abdul Rahman FS, Abdullah AM, Hasan H (2021) Mechanism and factors influence of graphene-based nanomaterials antimicrobial activities and application in dentistry. J Mater Res Technol 11:1290–1307. https://doi.org/10.1016/j.jmrt.2021.01.093

    Article  CAS  Google Scholar 

  35. Al-Jamal AN, Abbass KH, Rabee BH, Al-Bermany E (2023) Silver NPs reinforced the structural and mechanical properties of PVA-PAAm-PEG nanocomposites. AIP Conf Proc. https://doi.org/10.1063/5.0114621

    Article  Google Scholar 

  36. Aldulaimi NR, Al-Bermany E (2022) Tuning the Bandgap and absorption behaviour of the newly-fabricated ultrahigh molecular weight polyethylene oxide- polyvinyl alcohol/graphene oxide hybrid nanocomposites. Polym Polym Compos 30:1–13. https://doi.org/10.1177/09673911221112196

    Article  CAS  Google Scholar 

  37. Al-Bermany E, Qais D, Al-Rubaye S (2019) Graphene effect on the mechanical properties of poly (ethylene oxide)/graphene oxide nanocomposites using ultrasound technique. J Phys Conf Ser 1234:012011. https://doi.org/10.1088/1742-6596/1234/1/012011

    Article  CAS  Google Scholar 

  38. Oh JS, Kim KN, Yeom GY (2014) Graphene doping methods and device applications. J Nanosci Nanotechnol 14:1120–1133. https://doi.org/10.1166/jnn.2014.9118

    Article  CAS  PubMed  Google Scholar 

  39. Al-shammari AK, Al-Bermany E (2022) Polymer functional group impact on the thermo-mechanical properties of polyacrylic acid, polyacrylic amide- poly (vinyl alcohol) nanocomposites reinforced by graphene oxide nanosheets. J Polym Res 29:351. https://doi.org/10.1007/s10965-022-03210-3

    Article  CAS  Google Scholar 

  40. Tahriri M, Del Monico M, Moghanian A, Tavakkoli Yaraki M, Torres R, Yadegari A, Tayebi L (2019) Graphene and its derivatives: opportunities and challenges in dentistry. Mater Sci Eng C 102:171–185. https://doi.org/10.1016/j.msec.2019.04.051

    Article  CAS  Google Scholar 

  41. Malig J, Englert JM, Hirsch A, Guldi DM (2011) Wet chemistry of graphene. Electrochem Soc Interface 20:53–56. https://doi.org/10.1149/2.F06111if

    Article  CAS  Google Scholar 

  42. Ioannidis K, Niazi S, Mylonas P, Mannocci F, Deb S (2019) The synthesis of nano silver-graphene oxide system and its efficacy against endodontic biofilms using a novel tooth model. Dent Mater 35:1614–1629. https://doi.org/10.1016/j.dental.2019.08.105

    Article  CAS  PubMed  Google Scholar 

  43. Scarano A, Orsini T, Di Carlo F, Valbonetti L, Lorusso F (2021) Graphene-doped poly (Methyl-methacrylate) (pmma) implants: a micro-ct and histomorphometrical study in rabbits. Int J Mol Sci 22:1–14. https://doi.org/10.3390/ijms22031441

    Article  CAS  Google Scholar 

  44. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5:6971–6980. https://doi.org/10.1021/nn202451x

    Article  CAS  PubMed  Google Scholar 

  45. Wen J, Jiang F, Yeh CK, Sun Y (2016) Controlling fungal biofilms with functional drug delivery denture biomaterials. Colloids Surf B Biointerfaces 140:19–27. https://doi.org/10.1016/j.colsurfb.2015.12.028

    Article  CAS  PubMed  Google Scholar 

  46. de Souza Neto FN, Sala RL, Fernandes RA, Oliveira Xavier TP, Cruz SA, Paranhos CM, Monteiro DR, Barbosa DB, Delbem ACB, de Camargo ER (2019) Effect of synthetic colloidal nanoparticles in acrylic resin of dental use. Eur Polym J 112:531–538. https://doi.org/10.1016/j.eurpolymj.2018.10.009

    Article  CAS  Google Scholar 

  47. Lorusso F, Inchingolo F, Greco Lucchina A, Scogna G, Scarano A (2021) Graphene-doped Poly(methyl-methacrylate) as an enhanced biopolymer for medical device and dental implant. J Biol Regul Homeost Agents 35:195–204. https://doi.org/10.23812/21-2supp1-20

    Article  CAS  PubMed  Google Scholar 

  48. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  49. Al-Bermany E, Chen B (2021) Preparation and characterisation of poly(ethylene glycol)-adsorbed graphene oxide nanosheets. Polym Int 70:341–351. https://doi.org/10.1002/pi.6140

    Article  CAS  Google Scholar 

  50. Omoregie AI, Ngu LH, Ek D, Ong L, Nissom PM (2018) Author’s accepted manuscript. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2018.11.030

    Article  Google Scholar 

  51. Intra J, Sarto C, Mazzola S, Fania C, Tiberti N, Brambilla P (2019) In vitro activity of antifungal drugs against Trichophyton rubrum and Trichophyton mentagrophytes spp. by E-test method and non-supplemented Mueller-Hinton agar plates. Mycopathologia 184:517–523. https://doi.org/10.1007/s11046-019-00360-9

    Article  CAS  PubMed  Google Scholar 

  52. Kwon JY, Lee SY, Koedrith P, Lee JY, Kim K-M, Oh J-M, Yang SI, Kim M-K, Lee JK, Jeong J, Maeng EH, Lee BJ, Seo YR (2014) Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests. Mutat Res Toxicol Environ Mutagen 761:1–9. https://doi.org/10.1016/j.mrgentox.2014.01.005

    Article  CAS  Google Scholar 

  53. Harris D (1995) Quantitative chemical analysis, 4th ed., 36, W. H. Freeman and Company, New York. ISBN 9780716728818

  54. Baharvand H, Zeynali ME, Rabii A, Baharvand H (2004) Synthesis of partially hydrolyzed polyacrylamide and investigation of solution properties (Viscosity Behaviour). Iran Polym J 13:479–484

    Google Scholar 

  55. Abdel-Azim AAA, Atta AM, Farahat MS, Boutros WY (1998) Determination of intrinsic viscosity of polymeric compounds through a single specific viscosity measurement. Polymer (Guildf) 39:6827–6833. https://doi.org/10.1016/S0032-3861(98)00184-0

    Article  CAS  Google Scholar 

  56. Benaicha M, Jalbaud O, Hafidi Alaoui A, Burtschell Y (2015) Correlation between the mechanical behavior and the ultrasonic velocity of fiber-reinforced concrete. Constr Build Mater 101:702–709. https://doi.org/10.1016/j.conbuildmat.2015.10.047

    Article  Google Scholar 

  57. Al-shammari AK, Al-Bermany E (2021) New fabricated (PAA-PVA/GO) and (PAAm-PVA/GO) nanocomposites: functional groups and graphene nanosheets effect on the morphology and mechanical properties. J Phys Conf Ser 1973:012165. https://doi.org/10.1088/1742-6596/1973/1/012165

    Article  CAS  Google Scholar 

  58. Moridis GJ, McVay DA, Reddell DL, Blasingame TA (1994) Laplace transform finite difference (LTFD) numerical method for the simulation of compressible liquid flow in reservoirs. SPE Adv Technol Ser 2:122–131. https://doi.org/10.2118/22888-pa

    Article  Google Scholar 

  59. Abdelamir AI, Al-Bermany E, Hashim FS (2020) Important factors affecting the microstructure and mechanical properties of PEG/GO-based nanographene composites fabricated applying assembly-acoustic method. AIP Conf Proc. https://doi.org/10.1063/5.0000175

    Article  Google Scholar 

  60. Konishi S, Kashiwagi Y, Watanabe G, Osaki M, Katashima T, Urakawa O, Inoue T, Yamaguchi H, Harada A, Takashima Y (2020) Design and mechanical properties of supramolecular polymeric materials based on host-guest interactions: the relation between relaxation time and fracture energy. Polym Chem 11:6811–6820. https://doi.org/10.1039/d0py01347a

    Article  CAS  Google Scholar 

  61. El-Mawardi OK (1948) Measurement of acoustic impedance. J Acoust Soc Am 20:595–595. https://doi.org/10.1121/1.1917009

    Article  Google Scholar 

  62. Yang J, Yan X, Wu M, Chen F, Fei Z, Zhong M (2012) Self-assembly between graphene sheets and cationic poly(methyl methacrylate) (PMMA) particles: preparation and characterization of PMMA/graphene composites. J Nanopart Res 14:717. https://doi.org/10.1007/s11051-011-0717-0

    Article  CAS  Google Scholar 

  63. Rameshkumar C, Sarojini S, Naresh K, Subalakshmi R (2017) Preparation and characterization of pristine PMMA and PVDF thin film using solution casting process for optoelectronic devices. J Surf Sci Technol 33:12. https://doi.org/10.18311/jsst/2017/6215

    Article  CAS  Google Scholar 

  64. Aldulaimi NR, Al-Bermany E (2021) New fabricated UHMWPEO-PVA hybrid nanocomposites reinforced by GO nanosheets: structure and DC electrical behaviour. J Phys Conf Ser 1973:012164. https://doi.org/10.1088/1742-6596/1973/1/012164

    Article  CAS  Google Scholar 

  65. Wang C, Feng L, Yang H, Xin G, Li W, Zheng J, Tian W, Li X (2012) Graphene oxide stabilized polyethylene glycol for heat storage. Phys Chem Chem Phys 14:13233. https://doi.org/10.1039/c2cp41988b

    Article  CAS  PubMed  Google Scholar 

  66. Alamgir M, Nayak GC, Mallick A, Tiwari SK, Mondal S, Gupta M (2018) Processing of PMMA nanocomposites containing biocompatible GO and TiO2 nanoparticles. Mater Manuf Process 33:1291–1298. https://doi.org/10.1080/10426914.2018.1424996

    Article  CAS  Google Scholar 

  67. Febriantini D, Cahyana AH, Yunarti RT (2019) A microwave assisted, Fe3O4/Camphor-catalysed threecomponent synthesis of 2-amino-4H-chromenes and their antibacterial and antioxidant activity. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/509/1/012036

    Article  Google Scholar 

  68. Kim HN, Lee SK (2013) Effect of particle size on phase transitions in metastable alumina nanoparticles: a view from high-resolution solid-state 27Al NMR study. Am Mineral 98:1198–1210. https://doi.org/10.2138/am.2013.4364

    Article  CAS  ADS  Google Scholar 

  69. Fu Y, Xiong W, Wang J, Li J, Mei T, Wang X (2018) Polyethylene glycol based graphene aerogel confined phase change materials with high thermal stability. J Nanosci Nanotechnol 18:3341–3347. https://doi.org/10.1166/jnn.2018.14635

    Article  CAS  PubMed  Google Scholar 

  70. Karunakaran C, Anilkumar P, Gomathisankar P (2011) Photoproduction of iodine with nanoparticulate semiconductors and insulators. Chem Cent J 5:1–9. https://doi.org/10.1186/1752-153X-5-31

    Article  CAS  Google Scholar 

  71. Mohammed AA, Khodair ZT, Khadom AA (2020) Preparation and investigation of the structural properties of α-Al2O3 nanoparticles using the sol-gel method. Chem Data Collect 29:100531. https://doi.org/10.1016/j.cdc.2020.100531

    Article  CAS  Google Scholar 

  72. Bertola V (2013) Dynamic wetting of dilute polymer solutions: the case of impacting droplets. Adv Colloid Interface Sci 193–194:1–11. https://doi.org/10.1016/j.cis.2013.03.001

    Article  CAS  PubMed  Google Scholar 

  73. Rudyak VY, Krasnolutskii SL (2014) Dependence of the viscosity of nanofluids on nanoparticle size and material. Phys Lett Sect A Gen Solid State Phys. 378:1845–1849. https://doi.org/10.1016/j.physleta.2014.04.060

    Article  CAS  Google Scholar 

  74. Rashid A-KJ, Jawad ED, Kadem BY (2011) A study of some mechanical properties of Iraqi palm fiber-PVA composite by ultrasonic. Eur J Sci Res 61:203–209

    Google Scholar 

  75. Katsnelson MI, Novoselov KS (2007) Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Commun 143:3–13. https://doi.org/10.1016/j.ssc.2007.02.043

    Article  CAS  ADS  Google Scholar 

  76. Obaid AN, Al-Bermany E (2023) Performance of functionalized graphene oxide to improve anti-corrosion of epoxy coating on 2024–T3 aluminium alloy. Mater Chem Phys 305:127849. https://doi.org/10.1016/j.matchemphys.2023.127849

    Article  CAS  Google Scholar 

  77. Tabasi E, Vafa N, Firoozabadi B, Salmankhani A, Nouranian S, Habibzadeh S, Mashhadzadeh AH, Spitas C, Saeb MR (2023) Ion rejection performances of functionalized porous graphene nanomembranes for wastewater purification: a molecular dynamics simulation study. Colloids Surf A Physicochem Eng Asp 656:9–11. https://doi.org/10.1016/j.colsurfa.2022.130492

    Article  CAS  Google Scholar 

  78. Samulionis V, Svirskas Š, Banys J, Sánchez-Ferrer A, Chin SJ, McNally T (2013) Ultrasonic properties of composites of polymers and inorganic nanoparticles. Phys Status Solidi Appl Mater Sci 210:2348–2352. https://doi.org/10.1002/pssa.201329294

    Article  CAS  ADS  Google Scholar 

  79. Azzam WR (2014) Behavior of modified clay microstructure using polymer nanocomposites technique. Alexandria Eng J 53:143–150. https://doi.org/10.1016/j.aej.2013.11.010

    Article  Google Scholar 

  80. Evingür GA, Pekcan Ö (2018) Mechanical properties of graphene oxide–polyacrylamide composites before and after swelling in water. Polym Bull 75:1431–1439. https://doi.org/10.1007/s00289-017-2101-4

    Article  CAS  Google Scholar 

  81. Abdali K, Rabee BH, Al-Bermany E, Abdulridha AR, Abass KH, Kadim AM (2023) Effect of doping Sb2O3 NPs on morphological, mechanical, and dielectric properties of PVA/PVP blend film for electromechanical applications. NANO 18:2350011. https://doi.org/10.1142/S179329202350011X

    Article  CAS  Google Scholar 

  82. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388. https://doi.org/10.1126/science.1159499

    Article  CAS  PubMed  ADS  Google Scholar 

  83. Al-Nesrawya SH, Mohseenb MJ, Al-Bermany E (2020) Reinforcement the mechanical properties of (NR50/SBRs50/OSP) composites with oyster shell powder and carbon black. IOP Conf Ser Mater Sci Eng 871:012060. https://doi.org/10.1088/1757-899X/871/1/012060

    Article  CAS  Google Scholar 

  84. Liu S, Hu M, Zeng TH, Wu R, Jiang R, Wei J, Wang L, Kong J, Chen Y (2012) Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 28:12364–12372. https://doi.org/10.1021/la3023908

    Article  CAS  PubMed  Google Scholar 

  85. Aunkor MTH, Raihan T, Prodhan SH, Metselaar HSC, Malik SUF, Azad AK (2020) Antibacterial activity of graphene oxide nanosheet against multidrug resistant superbugs isolated from infected patients. R Soc Open Sci 7:200640. https://doi.org/10.1098/rsos.200640

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. Abdali K, Abass KH, Al-bermany E, Al-robayi EM, Kadim AM (2022) Morphological, optical, electricalcharacterizations and anti-Escherichia coli bacterial efficiency (AECBE) of PVA/PAAm/PEO polymer blend doped with silver NPs. Nano Biomed Eng 14:114–122. https://doi.org/10.5101/nbe.v14i2.p114-122.Abstract

    Article  CAS  Google Scholar 

Download references

Funding

We confirmed that no funds, grants, or other support were received.

Author information

Authors and Affiliations

Authors

Contributions

MAS, FHA, and EA-B designed and planned the project. MMS contributed to the structure, and rheological. KA did and analyzed the mechanical properties and antibacterial activity analysis results. NMA did and evaluated the SEM images. MAS wrote the first draft. EA-B synthesized the GO and did the OM. FHA participated in the experiment’s conception and improved the manuscript’s quality. EA-B and NMA performed all the experiments, and data analysis, and revised them with editing by all authors, which were read and approved in the final manuscript.

Corresponding author

Correspondence to Ehssan Al-Bermany.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 412 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salam, M.A., Alsultany, F.H., Al-Bermany, E. et al. Impact of graphene oxide nanosheets and polymethyl methacrylate on nano/hybrid-based restoration dental filler composites: ultrasound behavior and antibacterial activity. J Ultrasound (2024). https://doi.org/10.1007/s40477-023-00855-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40477-023-00855-8

Keywords

Navigation