Skip to main content
Log in

Mechanical properties of graphene oxide–polyacrylamide composites before and after swelling in water

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyacrylamide (PAAm) hydrogels have been proposed for use as promising biomaterials in biomedical and tissue engineering but their poor mechanical and water-retention properties have hindered their development. Graphene oxide (GO), an excellent nanofiller, was added to PAAm to produce mechanically strong GO–PAAm composites. The free radical crosslinking copolymerization method was used with GO content varying in the range between 5 and 50 µl of GO. The mechanical properties of the GO–PAAm composites are measured by compressive test, revealing a decrease in the shear modulus and toughness of the composites above 8 µl of GO by increasing GO content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Haraguchi K, Li HJ (2006) Mechanical properties and structure of polymer clay nanocomposite with high clay content. Macromolecules 39:1898–1905

    Article  CAS  Google Scholar 

  2. Evingür GA, Pekcan Ö (2014) Effect of multiwalled carbon nanotube (MWNT) on the behavior of swelling of polyacrylamide–MWNT composites. J Reinf Plast Compos 33(13):1199–1206

    Article  Google Scholar 

  3. Das S, Irin F, Ma L, Bhattacharia SK, Hedden RC, Green MJ (2013) Rheology and morphology of pristine graphene/polyacrylamide gels. ACS Appl Mater Interfaces 5:8633–8640

    Article  CAS  Google Scholar 

  4. Matzelle TR, Geuskens G, Kruse N (2003) Elastic properties of poly(N-isopropylacrylamide) and poly(acrylamide) hydrogels studied by scanning force microscopy. Macromolecules 36:2926–2931

    Article  CAS  Google Scholar 

  5. Baselga J, Hernandez- Fuentes I, Pierola MA, Llorente F (1987) Elastic properties of highly cross-linked polyacrylamide gels. Macromolecules 20:3060–3065

    Article  CAS  Google Scholar 

  6. Kaur H, Chatterji PR (1990) Interpenetrating hydrogel networks. 2. Swelling and mechanical properties of the gelatin–polyacrylamide interpenetrating networks. Macromolecules 23:4868–4871

    Article  CAS  Google Scholar 

  7. Valles E, Durando D, Katime I, Mendizabal E, Puig JE (2000) Equilibrium swelling and mechanical properties of hydrogels of acrylamide and itaconic acid or its esters. Polym Bull 44:109–114

    Article  CAS  Google Scholar 

  8. Huang Y, Zeng M, Ren J, Wang J, Fan L, Xu Q (2012) Preparation and swelling properties of graphene oxide/poly(acrylicacid-co-acrylamide) super-absorbent hydrogel nanocomposites. Colloids Surf A 401:97–106

    Article  CAS  Google Scholar 

  9. Zhang L, Wang Z, Xu C, Li Y, Gao J, Wang W, Lui Y (2011) High strength graphene oxide/polyvinyl alcohol composite hydrogels. J Mater Chem 2:10399–10406

    Article  Google Scholar 

  10. Shen J, Yan B, Li T, Long Y, Li N, Ye M (2012) Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos A 43:1476–1481

    Article  CAS  Google Scholar 

  11. Ren L, Liu T, Guo J, Guo S, Wang X, Wang W (2010) A smart pH responsive graphene/polyacrylamide complex via noncovalent interaction. Nanotechnology 21:335701 (IOP Publishing)

    Article  Google Scholar 

  12. Liu R, Liang S, Tang XZ, Yan D, Li X, Yu ZZ (2012) Tough and highly stretchable graphene oxide/polyacrylamide nanocomposite hydrogels. J Mater Chem 22:14160–14167

    Article  CAS  Google Scholar 

  13. Wang J, Liu C, Shuai Y, Cui X, Nie L (2014) Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf B 113:223–229

    Article  CAS  Google Scholar 

  14. Liu J, Song G, He C, Wang H (2013) Self-healing in tough graphene oxide composite hydrogels. Macromol Rapid Commun 34:1002–1007

    Article  CAS  Google Scholar 

  15. Fan J, Shi Z, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem 1:7433–7443

    Article  CAS  Google Scholar 

  16. Evingur GA, Pekcan Ö (2012) Elastic percolation of swollen polyacrylamide (PAAm)–multiwall carbon nanotubes composite. Phase Transit 85:553–564

    Article  CAS  Google Scholar 

  17. Evingur GA, Pekcan Ö (2015) Kinetics models for the dynamical behaviors of PAAm–κ-carrageenan composite gels. J Biol Phys 41:37–47

    Article  CAS  Google Scholar 

  18. Evingur GA, Pekcan Ö (2013) Superelastic percolation network of polyacrylamide (PAAm)–kappa carrageenan (kC) composite. Cellulose 20:1145–1151

    Article  Google Scholar 

  19. Evingur GA, Pekcan Ö (2012) Temperature effect on elasticity of swollen composite formed from polyacrylamide (PAAm)–multiwall carbon nanotubes (MWNTs). Engineering 4:619–624

    Article  Google Scholar 

  20. Evingur GA, Pekcan Ö (2014) Elastic properties of a swollen PAAm–NIPA composite with various NIPA contents. Polym Plast Technol Eng 53(8):834–839

    Article  CAS  Google Scholar 

  21. Anseth KS, Bowman CN, Peppas LB (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17:1647–1657

    Article  CAS  Google Scholar 

  22. Nielsen LE, Landel RF (1994) Mechanical properties of polymers and composites. Marcel Dekker, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülşen Akın Evingür.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evingür, G.A., Pekcan, Ö. Mechanical properties of graphene oxide–polyacrylamide composites before and after swelling in water. Polym. Bull. 75, 1431–1439 (2018). https://doi.org/10.1007/s00289-017-2101-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2101-4

Keywords

Navigation