Skip to main content
Log in

Relationships Between Resistance and Virulence in Burkholderia pseudomallei

  • Melioidosis and Tropical Bacteriology (A Torres, Section Editor)
  • Published:
Current Tropical Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Aroused by the capacity of bacteria to develop antimicrobial resistance which allows them to persist in patient under antibiotic treatment, and their adaptation to host defenses by modifying their virulence, we review the relationship between antibiotic resistance and virulence in Burkholderia pseudomallei.

Recent Finding

Few studies focused on both antibiotic resistance and virulence. The relationship between these two mechanisms is very complex. Main resistance mechanisms such as efflux, biofilm, morphological changes or persistence are linked to virulence but results are still controversial. Recent clinical reports seem to indicate that reductive evolution is involved for balancing antibiotic resistance and virulence in chronic melioidosis cases.

Summary

The relation of virulence and resistance should be more considered to better understand the resistance, persistence, and pathogenicity of B. pseudomallei. Focusing on these two mechanisms, it will be possible to improve therapeutic options against this important emerging disease and avoid therapy failures or relapses for B. pseudomallei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Limmathurotsakul D, Golding N, Dance DA, Messina JP, Pigott DM, Moyes CL, et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol. 2016;1(1) doi:10.1038/nmicrobiol.2015.8.

  2. McRobb E, Sarovich DS, Price EP, Kaestli M, Mayo M, Keim P, et al. Tracing melioidosis back to the source: using whole-genome sequencing to investigate an outbreak originating from a contaminated domestic water supply. J Clin Microbiol. 2015;53(4):1144–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. •• Wiersinga WJ, Currie BJ, Peacock SJ. Melioidosis. N Engl J Med. 2012;367(11):1035–44. Excellent review on various aspect of melioidosis

    Article  CAS  PubMed  Google Scholar 

  4. Foong YC, Tan M, Bradbury RS. Melioidosis: a review. Rural Remote Health. 2014;14(4):2763.

    CAS  PubMed  Google Scholar 

  5. Lazar Adler NR, Govan B, Cullinane M, Harper M, Adler B, Boyce JD. The molecular and cellular basis of pathogenesis in melioidosis: how does Burkholderia pseudomallei cause disease? FEMS Microbiol Rev. 2009;33(6):1079–99.

    Article  PubMed  Google Scholar 

  6. Limmathurotsakul D, Chaowagul W, Chierakul W, Stepniewska K, Maharjan B, Wuthiekanun V, et al. Risk factors for recurrent melioidosis in northeast Thailand. Clin Infect Dis. 2006;43(8):979–86.

    Article  PubMed  Google Scholar 

  7. •• Dance D. Treatment and prophylaxis of melioidosis. Int J Antimicrob Agents. 2014;43(4):310–8. Complete review in melioidosis treatment

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chetchotisakd P, Chierakul W, Chaowagul W, Anunnatsiri S, Phimda K, Mootsikapun P, et al. Trimethoprim-sulfamethoxazole versus trimethoprim-sulfamethoxazole plus doxycycline as oral eradicative treatment for melioidosis (MERTH): a multicentre, double-blind, non-inferiority, randomised controlled trial. Lancet. 2014;383(9919):807–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sarovich DS, Ward L, Price EP, Mayo M, Pitman MC, Baird RW, et al. Recurrent melioidosis in the Darwin prospective melioidosis study: improving therapies mean that relapse cases are now rare. J Clin Microbiol. 2014;52(2):650–3.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eickhoff TC, Bennett JV, Hayes PS, Feeley J. Pseudomonas pseudomallei: susceptibility to chemotherapeutic agents. J Infect Dis. 1970;121(2):95–102.

    Article  CAS  PubMed  Google Scholar 

  11. Dance DA, Wuthiekanun V, Chaowagul W, White NJ. The activity of amoxycillin/clavulanic acid against Pseudomonas pseudomallei. J Antimicrob Chemother. 1989;24(6):1012–4.

    Article  CAS  PubMed  Google Scholar 

  12. Jenney AW, Lum G, Fisher DA, Currie BJ. Antibiotic susceptibility of Burkholderia pseudomallei from tropical northern Australia and implications for therapy of melioidosis. Int J Antimicrob Agents. 2001;17(2):109–13.

    Article  CAS  PubMed  Google Scholar 

  13. •• Rhodes KA, Schweizer HP. Antibiotic resistance in Burkholderia species. Drug Resist Updat. 2016;28:82–90. Excellent review with a complet overview of all antibiotic resistance mechanisms in Bukholderia species

  14. Loutet SA, Valvano MA. Extreme antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. Front Microbiol. 2011;2:159.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Novem V, Shui G, Wang D, Bendt AK, Sim SH, Liu Y, et al. Structural and biological diversity of lipopolysaccharides from Burkholderia pseudomallei and Burkholderia thailandensis. Clin Vaccine Immunol. 2009;16(10):1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aunkham A, Schulte A, Winterhalter M, Suginta W. Porin involvement in cephalosporin and carbapenem resistance of Burkholderia pseudomallei. PLoS One. 2014;9(5):e95918.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Suginta W, Mahendran KR, Chumjan W, Hajjar E, Schulte A, Winterhalter M, et al. Molecular analysis of antimicrobial agent translocation through the membrane porin BpsOmp38 from an ultraresistant Burkholderia pseudomallei strain. Biochim Biophys Acta. 2011;1808(6):1552–9.

    Article  CAS  PubMed  Google Scholar 

  18. • Podnecky NL, Rhodes KA, Schweizer HP. Efflux pump-mediated drug resistance in Burkholderia. Front Microbiol. 2015;6:305. Good review on efflux pumps in B. pseudomallei

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moore RA, DeShazer D, Reckseidler S, Weissman A, Woods DE. Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob Agents Chemother. 1999;43(3):465–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. • Trunck LA, Propst KL, Wuthiekanun V, Tuanyok A, Beckstrom-Sternberg SM, Beckstrom-Sternberg JS, et al. Molecular basis of rare aminoglycoside susceptibility and pathogenesis of Burkholderia pseudomallei clinical isolates from Thailand. PLoS Negl Trop Dis. 2009;3(9):e519. Interesting paper on gentamicin susceptible B. pseudomallei strain

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mima T, Schweizer HP. The BpeAB-OprB efflux pump of Burkholderia pseudomallei 1026b does not play a role in quorum sensing, virulence factor production, or extrusion of aminoglycosides but is a broad-spectrum drug efflux system. Antimicrob Agents Chemother. 2010;54(8):3113–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chan YY, Chua KL. The Burkholderia pseudomallei BpeAB-OprB efflux pump: expression and impact on quorum sensing and virulence. J Bacteriol. 2005;187(14):4707–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar A, Chua KL, Schweizer HP. Method for regulated expression of single-copy efflux pump genes in a surrogate Pseudomonas aeruginosa strain: identification of the BpeEF-OprC chloramphenicol and trimethoprim efflux pump of Burkholderia pseudomallei 1026b. Antimicrob Agents Chemother. 2006;50(10):3460–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Podnecky NL, Wuthiekanun V, Peacock SJ, Schweizer HP. The BpeEF-OprC efflux pump is responsible for widespread trimethoprim resistance in clinical and environmental Burkholderia pseudomallei isolates. Antimicrob Agents Chemother. 2013;57(9):4381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rholl DA, Papp-Wallace KM, Tomaras AP, Vasil ML, Bonomo RA, Schweizer HP. Molecular investigations of PenA-mediated beta-lactam resistance in Burkholderia pseudomallei. Front Microbiol. 2011;2:139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tribuddharat C, Moore RA, Baker P, Woods DE. Burkholderia pseudomallei class a beta-lactamase mutations that confer selective resistance against ceftazidime or clavulanic acid inhibition. Antimicrob Agents Chemother. 2003;47(7):2082–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sam IC, See KH, Puthucheary SD. Variations in ceftazidime and amoxicillin-clavulanate susceptibilities within a clonal infection of Burkholderia pseudomallei. J Clin Microbiol. 2009;47(5):1556–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bugrysheva JV, Sue D, Gee JE, Elrod MG, Hoffmaster AR, Randall LB, et al. Antibiotic resistance markers in strain Bp1651 of Burkholderia pseudomallei identified by genome sequence analysis. Antimicrob Agents Chemother. 2017; doi:10.1128/AAC.00010-17.

  29. Papp-Wallace KM, Becka SA, Taracila MA, Winkler ML, Gatta JA, Rholl DA, et al. Exposing a beta-lactamase “twist”: the mechanistic basis for the high level of Ceftazidime resistance in the C69F variant of the Burkholderia pseudomallei PenI beta-lactamase. Antimicrob Agents Chemother. 2016;60(2):777–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Keith KE, Oyston PC, Crossett B, Fairweather NF, Titball RW, Walsh TR, et al. Functional characterization of OXA-57, a class D beta-lactamase from Burkholderia pseudomallei. Antimicrob Agents Chemother. 2005;49(4):1639–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Niumsup P, Wuthiekanun V. Cloning of the class D beta-lactamase gene from Burkholderia pseudomallei and studies on its expression in ceftazidime-susceptible and -resistant strains. J Antimicrob Chemother. 2002;50(4):445–55.

    Article  CAS  PubMed  Google Scholar 

  32. Sawasdidoln C, Taweechaisupapong S, Sermswan RW, Tattawasart U, Tungpradabkul S, Wongratanacheewin S. Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance. PLoS One. 2010;5(2):e9196.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pibalpakdee P, Wongratanacheewin S, Taweechaisupapong S, Niumsup PR. Diffusion and activity of antibiotics against Burkholderia pseudomallei biofilms. Int J Antimicrob Agents. 2012;39(4):356–9.

    Article  CAS  PubMed  Google Scholar 

  34. Ooi WF, Ong C, Nandi T, Kreisberg JF, Chua HH, Sun G, et al. The condition-dependent transcriptional landscape of Burkholderia pseudomallei. PLoS Genet. 2013;9(9):e1003795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. •• Chantratita N, Wuthiekanun V, Boonbumrung K, Tiyawisutsri R, Vesaratchavest M, Limmathurotsakul D, et al. Biological relevance of colony morphology and phenotypic switching by Burkholderia pseudomallei. J Bacteriol. 2007;189(3):807–17. Paper describing B. pseudomallei morphotypes and their virulence in several models

    Article  CAS  PubMed  Google Scholar 

  36. Chen K, Sun GW, Chua KL, Gan YH. Modified virulence of antibiotic-induced Burkholderia pseudomallei filaments. Antimicrob Agents Chemother. 2005;49(3):1002–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haussler S, Rohde M, Steinmetz I. Highly resistant Burkholderia pseudomallei small colony variants isolated in vitro and in experimental melioidosis. Med Microbiol Immunol. 1999;188(2):91–7.

    Article  CAS  PubMed  Google Scholar 

  38. Nierman WC, Yu Y, Losada L. The in vitro antibiotic tolerant persister population in Burkholderia pseudomallei is altered by environmental factors. Front Microbiol. 2015;6:1338.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lewis ER, Torres AG. The art of persistence-the secrets to Burkholderia chronic infections. Pathog Dis. 2016;74(6) DOI: 10.1093/femspd/ftw070.

  40. Kester JC, Fortune SM. Persisters and beyond: mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit Rev Biochem Mol Biol. 2014;49(2):91–101.

    Article  CAS  PubMed  Google Scholar 

  41. Jones AL, Beveridge TJ, Woods DE. Intracellular survival of Burkholderia pseudomallei. Infect Immun. 1996;64(3):782–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Holden MT, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, et al. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A. 2004;101(39):14240–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. •• Stone JK, DeShazer D, Brett PJ, Burtnick MN. Melioidosis: molecular aspects of pathogenesis. Expert Rev Anti-Infect Ther. 2014;12(12):1487–99. Good review on B. pseudomallei virulence factors

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pilatz S, Breitbach K, Hein N, Fehlhaber B, Schulze J, Brenneke B, et al. Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun. 2006;74(6):3576–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shalom G, Shaw JG, Thomas MS. In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology. 2007;153(Pt 8):2689–99.

    Article  CAS  PubMed  Google Scholar 

  46. Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics. 2009;10:104. doi:10.1186/1471-2164-10-104.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, Chantratita N, et al. The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun. 2011;79(4):1512–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burtnick MN, Brett PJ. Burkholderia mallei and Burkholderia pseudomallei cluster 1 type VI secretion system gene expression is negatively regulated by iron and zinc. PLoS One. 2013;8(10):e76767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, Hood RD, et al. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 2010;6(8):e1001068.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A. 2007;104(39):15508–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Silverman JM, Brunet YR, Cascales E, Mougous JD. Structure and regulation of the type VI secretion system. Annu Rev Microbiol. 2012;66:453–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reckseidler-Zenteno SL, DeVinney R, Woods DE. The capsular polysaccharide of Burkholderia pseudomallei contributes to survival in serum by reducing complement factor C3b deposition. Infect Immun. 2005;73(2):1106–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. DeShazer D, Brett PJ, Woods DE. The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol Microbiol. 1998;30(5):1081–100.

    Article  CAS  PubMed  Google Scholar 

  54. • Tandhavanant S, Thanwisai A, Limmathurotsakul D, Korbsrisate S, Day NP, Peacock SJ, et al. Effect of colony morphology variation of Burkholderia pseudomallei on intracellular survival and resistance to antimicrobial environments in human macrophages in vitro. BMC Microbiol. 2010;10:303. doi:10.1186/1471-2180-10-303. With [36] linking morphotype, virulence and antibiotic resistance

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gierok P, Kohler C, Steinmetz I, Lalk M. Burkholderia pseudomallei colony morphotypes show a synchronized metabolic pattern after acute infection. PLoS Negl Trop Dis. 2016;10(3):e0004483.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Shea AA, Bernhards RC, Cote CK, Chase CJ, Koehler JW, Klimko CP, et al. Two stable variants of Burkholderia pseudomallei strain MSHR5848 express broadly divergent in vitro phenotypes associated with their virulence differences. PLoS One. 2017;12(2):e0171363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Valade E, Thibault FM, Gauthier YP, Palencia M, Popoff MY, Vidal DR. The PmlI-PmlR quorum-sensing system in Burkholderia pseudomallei plays a key role in virulence and modulates production of the MprA protease. J Bacteriol. 2004;186(8):2288–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tuanyok A, Tom M, Dunbar J, Woods DE. Genome-wide expression analysis of Burkholderia pseudomallei infection in a hamster model of acute melioidosis. Infect Immun. 2006;74(10):5465–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chin CY, Tan SC, Nathan S. Immunogenic recombinant Burkholderia pseudomallei MprA serine protease elicits protective immunity in mice. Front Cell Infect Microbiol. 2012;2:85. doi:10.3389/fcimb.2012.00085.

    Article  PubMed  PubMed Central  Google Scholar 

  60. • Lazar Adler NR, Dean RE, Saint RJ, Stevens MP, Prior JL, Atkins TP, et al. Identification of a predicted trimeric autotransporter adhesin required for biofilm formation of Burkholderia pseudomallei. PLoS One. 2013;8(11):e79461. First study making direclty a link between biofilm and virulence in B. pseudomallei

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cruz-Migoni A, Hautbergue GM, Artymiuk PJ, Baker PJ, Bokori-Brown M, Chang CT, et al. A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A. Science. 2011;334(6057):821–4.

    Article  CAS  PubMed  Google Scholar 

  62. Tuanyok A, Leadem BR, Auerbach RK, Beckstrom-Sternberg SM, Beckstrom-Sternberg JS, Mayo M, et al. Genomic islands from five strains of Burkholderia pseudomallei. BMC Genomics. 2008;9:566.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tuanyok A, Auerbach RK, Brettin TS, Bruce DC, Munk AC, Detter JC, et al. A horizontal gene transfer event defines two distinct groups within Burkholderia pseudomallei that have dissimilar geographic distributions. J Bacteriol. 2007;189(24):9044–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Alcalde-Rico M, Hernando-Amado S, Blanco P, Martinez JL. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front Microbiol. 2016;7:1483.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, et al. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms. 2016;4(1) doi:10.3390/microorganisms4010014.

  66. Wand ME, Muller CM, Titball RW, Michell SL. Macrophage and galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol. 2011;11(1):11. doi:10.1186/1471-2180-11-11.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Viktorov DV, Zakharova IB, Podshivalova MV, Kalinkina EV, Merinova OA, Ageeva NP, et al. High-level resistance to fluoroquinolones and cephalosporins in Burkholderia pseudomallei and closely related species. Trans R Soc Trop Med Hyg. 2008;102(Suppl 1):S103–10.

    Article  PubMed  Google Scholar 

  68. Chan YY, Bian HS, Tan TM, Mattmann ME, Geske GD, Igarashi J, et al. Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump. J Bacteriol. 2007;189(11):4320–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Limmathurotsakul D, Paeyao A, Wongratanacheewin S, Saiprom N, Takpho N, Thaipadungpanit J, et al. Role of Burkholderia pseudomallei biofilm formation and lipopolysaccharide in relapse of melioidosis. Clin Microbiol Infect. 2014;20(11):O854–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Taweechaisupapong S, Kaewpa C, Arunyanart C, Kanla P, Homchampa P, Sirisinha S, et al. Virulence of Burkholderia pseudomallei does not correlate with biofilm formation. Microb Pathog. 2005;39(3):77–85.

    Article  CAS  PubMed  Google Scholar 

  71. Chin CY, Hara Y, Ghazali AK, Yap SJ, Kong C, Wong YC, et al. Global transcriptional analysis of Burkholderia pseudomallei high and low biofilm producers reveals insights into biofilm production and virulence. BMC Genomics. 2015;16:471.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Anuntagool N, Wuthiekanun V, White NJ, Currie BJ, Sermswan RW, Wongratanacheewin S, et al. Lipopolysaccharide heterogeneity among Burkholderia pseudomallei from different geographic and clinical origins. Am J Trop Med Hyg. 2006;74(3):348–52.

    CAS  PubMed  Google Scholar 

  73. Kanthawong S, Bolscher JG, Veerman EC, van Marle J, de Soet HJ, Nazmi K, et al. Antimicrobial and antibiofilm activity of LL-37 and its truncated variants against Burkholderia pseudomallei. Int J Antimicrob Agents. 2012;39(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  74. Lobato-Marquez D, Diaz-Orejas R, Garcia-Del PF. Toxin-antitoxins and bacterial virulence. FEMS Microbiol Rev. 2016;40(5):592–609.

    Article  PubMed  Google Scholar 

  75. Butt A, Higman VA, Williams C, Crump MP, Hemsley CM, Harmer N, et al. The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochem J. 2014;459(2):333–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. •• Lazar Adler NR, Allwood EM, Deveson Lucas D, Harrison P, Watts S, Dimitropoulos A, et al. Perturbation of the two-component signal transduction system, BprRS, results in attenuated virulence and motility defects in Burkholderia pseudomallei. BMC Genomics. 2016;17:331. Interesting transcriptomic study linking a virulence two componement system and expression of antibiotic resistance genes

    Article  PubMed  PubMed Central  Google Scholar 

  77. Butt A, Halliday N, Williams P, Atkins HS, Bancroft GJ, Titball RW. Burkholderia pseudomallei kynB plays a role in AQ production, biofilm formation, bacterial swarming and persistence. Res Microbiol. 2016;167(3):159–67.

  78. •• Price EP, Sarovich DS, Mayo M, Tuanyok A, Drees KP, Kaestli M, et al. Within-host evolution of Burkholderia pseudomallei over a twelve-year chronic carriage infection. MBio. 2013;4(4). Interesting study about B. pseudomallei micro-evolution in non cystic fibrosis patient.

  79. Geake JB, Reid DW, Currie BJ, Bell SC, Melioid CFI, Bright-Thomas R, et al. An international, multicentre evaluation and description of Burkholderia pseudomallei infection in cystic fibrosis. BMC Pulm Med. 2015;15:116.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Viberg LT, Sarovich DS, Kidd TJ, Geake JB, Bell SC, Currie BJ, et al. Within-host evolution of Burkholderia pseudomallei during chronic infection of seven australasian cystic fibrosis patients. MBio. 2017;8(2) doi: 10.1128/mBio.00356-17.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabienne Neulat-Ripoll.

Ethics declarations

Conflict of Interest

Marine Schnetterle is supported by DGA/MRIS France.

Lionel Koch, Olivier Gorgé, Eric Valade, Jean-Michel Bolla, Fabrice Biot, and Fabienne Neulat-Ripoll each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Melioidosis and Tropical Bacteriology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnetterle, M., Koch, L., Gorgé, O. et al. Relationships Between Resistance and Virulence in Burkholderia pseudomallei . Curr Trop Med Rep 4, 127–135 (2017). https://doi.org/10.1007/s40475-017-0119-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40475-017-0119-1

Keywords

Navigation