Advertisement

Current Developmental Disorders Reports

, Volume 3, Issue 1, pp 75–81 | Cite as

The Brain-Gut-Microbiome Axis: What Role Does it Play in Autism Spectrum Disorder?

  • Ruth Ann Luna
  • Tor C. Savidge
  • Kent C. WilliamsEmail author
Autism Spectrum (A Richdale, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Autism Specrtum

Abstract

The brain-gut-microbiome axis refers to the interactions between the central nervous system, gastrointestinal (GI) system, and microorganisms that live in the gastrointestinal tract. Exploring these interactions provides a rationale for why gastrointestinal disorders commonly occur in children with autism spectrum disorders (ASD). Signs of altered brain-gut interactions that are closely associated with functional GI disorders (FGIDs) commonly occur in children with ASD. Studies of microbiome in ASD suggest that changes in the gut microbiome may be associated with ASD and with GI disorders in children with ASD. Further studies into the brain-gut-microbiome axis could lead to new techniques for identifying GI disorders in children with ASD and novel therapies for treating ASD behaviors.

Keywords

Brain-gut axis Central nervous system Developmental disorders Autism spectrum disorders ASD GI disorders Functional GI disorders Gut microbiome ASD behaviors Review 

Notes

Acknowledgements

This work is supported by Autism Speaks and Grants RO1AI100914 and DK56338 from the National Institute of Allergy and Infectious Diseases and National Institute of Diabetes and Digestive and Kidney Diseases at the National Institutes of Health (NIH).

Compliance with Ethical Standards

Conflict of Interest

Ruth Ann Luna, Tor C. Savidge, and Kent C. Williams declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

  1. 1.
    American Psychiatric Association. DSM-5 Task Force. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington, D.C: American Psychiatric Association; 2013.Google Scholar
  2. 2.
    McElhanon BO, McCracken C, Karpen S, Sharp WG. Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics. 2014;133(5):872–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Peeters B, Noens I, Philips EM, Kuppens S, Benninga MA. Autism spectrum disorders in children with functional defecation disorders. J Pediatr. 2013.Google Scholar
  4. 4.
    Buie T, Fuchs 3rd GJ, Furuta GT, Kooros K, Levy J, Lewis JD, et al. Recommendations for evaluation and treatment of common gastrointestinal problems in children with ASDs. Pediatrics. 2010;125 Suppl 1:S19–29.CrossRefPubMedGoogle Scholar
  5. 5.
    Gorrindo P, Williams KC, Lee EB, Walker LS, McGrew SG, Levitt P. Gastrointestinal dysfunction in autism: parental report, clinical evaluation, and associated factors. Autism Res. 2012;5(2):101–8.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Buie T, Campbell DB, Fuchs 3rd GJ, Furuta GT, Levy J, Vandewater J, et al. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: a consensus report. Pediatrics. 2010;125 Suppl 1:S1–18.CrossRefPubMedGoogle Scholar
  7. 7.
    Furuta GT, Williams K, Kooros K, Kaul A, Panzer R, Coury DL, et al. Management of constipation in children and adolescents with autism spectrum disorders. Pediatrics. 2012;130 Suppl 2:S98–105.CrossRefPubMedGoogle Scholar
  8. 8.
    Rasquin A, Di Lorenzo C, Forbes D, Guiraldes E, Hyams JS, Staiano A, et al. Childhood functional gastrointestinal disorders: child/adolescent. Gastroenterology. 2006;130(5):1527–37.CrossRefPubMedGoogle Scholar
  9. 9.
    Hyman PE, Milla PJ, Benninga MA, Davidson GP, Fleisher DF, Taminiau J. Childhood functional gastrointestinal disorders: neonate/toddler. Gastroenterology. 2006;130(5):1519–26.CrossRefPubMedGoogle Scholar
  10. 10.
    Ibrahim SH, Voigt RG, Katusic SK, Weaver AL, Barbaresi WJ. Incidence of gastrointestinal symptoms in children with autism: a population-based study. Pediatrics. 2009;124(2):680–6.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mazurek MO, Vasa RA, Kalb LG, Kanne SM, Rosenberg D, Keefer A, et al. Anxiety, sensory over-responsivity, and gastrointestinal problems in children with autism spectrum disorders. J Abnorm Child Psychol. 2013;41(1):165–76.CrossRefPubMedGoogle Scholar
  12. 12.
    Waters AM, Schilpzand E, Bell C, Walker LS, Baber K. Functional gastrointestinal symptoms in children with anxiety disorders. J Abnorm Child Psychol. 2013;41(1):151–63.CrossRefPubMedGoogle Scholar
  13. 13.
    Walker LS, Greene JW. Children with recurrent abdominal pain and their parents: more somatic complaints, anxiety, and depression than other patient families? J Pediatr Psychol. 1989;14(2):231–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Jarrett M, Heitkemper M, Cain KC, Burr RL, Hertig V. Sleep disturbance influences gastrointestinal symptoms in women with irritable bowel syndrome. Dig Dis Sci. 2000;45(5):952–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Peters B, Williams KC, Gorrindo P, Rosenberg D, Lee EB, Levitt P, et al. Rigid-compulsive behaviors are associated with mixed bowel symptoms in autism spectrum disorder. J Autism Dev Disord. 2014;44(6):1425–32.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Maenner MJ, Arneson CL, Levy SE, Kirby RS, Nicholas JS, Durkin MS. Brief report: association between behavioral features and gastrointestinal problems among children with autism spectrum disorder. J Autism Dev Disord. 2012;42(7):1520–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010;16(4):444–53.CrossRefPubMedGoogle Scholar
  18. 18.
    Williams BL, Hornig M, Buie T, Bauman ML, Cho Paik M, Wick I, et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One. 2011;6(9):e24585.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One. 2013;8(7):e68322.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol Autism. 2013;4(1):42.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013;8(10):e76993.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Son JS, Zheng LJ, Rowehl LM, Tian X, Zhang Y, Zhu W, et al. Comparison of fecal microbiota in children with autism spectrum disorders and neurotypical siblings in the Simons Simplex Collection. PLoS One. 2015;10(10):e0137725.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gondalia SV, Palombo EA, Knowles SR, Cox SB, Meyer D, Austin DW. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Research. 2012.Google Scholar
  24. 24.
    Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011;105(5):755–64.CrossRefPubMedGoogle Scholar
  25. 25.
    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    de Theije CG, Wopereis H, Ramadan M, van Eijndthoven T, Lambert J, Knol J, et al. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun. 2014;37:197–206.CrossRefPubMedGoogle Scholar
  27. 27.
    Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2012.Google Scholar
  29. 29.
    Korterink JJ, Ockeloen L, Benninga MA, Tabbers MM, Hilbink M, Deckers-Kocken JM. Probiotics for childhood functional gastrointestinal disorders: a systematic review and meta-analysis. Acta Paediatr. 2014;103(4):365–72.CrossRefPubMedGoogle Scholar
  30. 30.
    Tiequn B, Guanqun C, Shuo Z. Therapeutic effects of Lactobacillus in treating irritable bowel syndrome: a meta-analysis. Intern Med. 2015;54(3):243–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013;144(7):1394-1401–1401 e1391-1394.CrossRefPubMedGoogle Scholar
  32. 32.
    James S, Stevenson SW, Silove N, Williams K. Chelation for autism spectrum disorder (ASD). Cochrane Database Syst Rev. 2015;5:CD010766.Google Scholar
  33. 33.
    Pegorie M, Shankar K, Welfare WS, Wilson RW, Khiroya C, Munslow G, et al. Measles outbreak in Greater Manchester, England, October 2012 to September 2013: epidemiology and control. Euro Surveill. 2014;19(49).Google Scholar
  34. 34.
    Brown MJ, Willis T, Omalu B, Leiker R. Deaths resulting from hypocalcemia after administration of edetate disodium: 2003–2005. Pediatrics. 2006;118(2):e534–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Frye RE, Slattery J, MacFabe DF, Allen-Vercoe E, Parker W, Rodakis J, et al. Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. Microb Ecol Health Dis. 2015;26:26878.PubMedGoogle Scholar
  36. 36.
    Aroniadis OC, Brandt LJ. Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol. 2013;29(1):79–84.CrossRefPubMedGoogle Scholar
  37. 37.
    Sandler RH, Finegold SM, Bolte ER, Buchanan CP, Maxwell AP, Vaisanen ML, et al. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J Child Neurol. 2000;15(7):429–35.CrossRefPubMedGoogle Scholar
  38. 38.
    Ming X, Stein TP, Barnes V, Rhodes N, Guo L. Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res. 2012;11(12):5856–62.PubMedGoogle Scholar
  39. 39.
    Yap IK, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK. Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J Proteome Res. 2010;9(6):2996–3004.CrossRefPubMedGoogle Scholar
  40. 40.
    Mavel S, Nadal-Desbarats L, Blasco H, Bonnet-Brilhault F, Barthelemy C, Montigny F, et al. 1H-13C NMR-based urine metabolic profiling in autism spectrum disorders. Talanta. 2013;114:95–102.CrossRefPubMedGoogle Scholar
  41. 41.
    Cozzolino R, De Magistris L, Saggese P, Stocchero M, Martignetti A, Di Stasio M, et al. Use of solid-phase microextraction coupled to gas chromatography-mass spectrometry for determination of urinary volatile organic compounds in autistic children compared with healthy controls. Anal Bioanal Chem. 2014;406(19):4649–62.CrossRefPubMedGoogle Scholar
  42. 42.
    Emond P, Mavel S, Aidoud N, Nadal-Desbarats L, Montigny F, Bonnet-Brilhault F, et al. GC-MS-based urine metabolic profiling of autism spectrum disorders. Anal Bioanal Chem. 2013;405(15):5291–300.CrossRefPubMedGoogle Scholar
  43. 43.
    Stilling RM, Ryan FJ, Hoban AE, Shanahan F, Clarke G, Claesson MJ, et al. Microbes & neurodevelopment—absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain Behav Immun. 2015.Google Scholar
  44. 44.
    Alemi F, Kwon E, Poole DP, Lieu T, Lyo V, Cattaruzza F, et al. The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest. 2013;123(4):1513–30.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ruth Ann Luna
    • 1
    • 2
  • Tor C. Savidge
    • 1
    • 2
  • Kent C. Williams
    • 3
    Email author
  1. 1.Department of Pathology and ImmunologyBaylor College of MedicineHoustonUSA
  2. 2.Texas Children’s Microbiome Center, Department of PathologyTexas Children’s HospitalHoustonUSA
  3. 3.Department of Pediatric Gastroenterology, Hepatology, and NutritionNationwide Children’s HospitalColumbusUSA

Personalised recommendations