Parkinson J. An essay on the shaking palsy. London: Whittingham and Rowland Sherwood, Neely and Jones; 1817.
Google Scholar
Obeso JA, Stamelou M, Goetz CG, Poewe W, Lang AE, Weintraub D, et al. Past, present, and future of Parkinson’s disease: a special essay on the 200th anniversary of the shaking palsy. Mov Disord. 2017;32(9):1264–310.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pandey S, Srivanitchapoom P. Levodopa-induced dyskinesia: clinical features, pathophysiology, and medical management. Ann Indian Acad Neurol. 2017;20(3):190–8.
PubMed
PubMed Central
Google Scholar
Bergman H, Wichmann T, DeLong MR. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science. 1990;249(4975):1436–8.
Article
PubMed
CAS
Google Scholar
Benabid AL, Pollak P, Gross C, Hoffmann D, Benazzouz A, Gao DM, et al. Acute and long-term effects of subthalamic nucleus stimulation in Parkinson’s disease. Stereotact Funct Neurosurg. 1994;62(1–4):76–84.
Article
PubMed
CAS
Google Scholar
Sugiyama K, Nozaki T, Asakawa T, Koizumi S, Saitoh O, Namba H. The present indication and future of deep brain stimulation. Neurol Med Chir (Tokyo). 2015 May;55(5):416–21.
Article
Google Scholar
Narang P, Glowacki A, Lippmann S. Electroconvulsive therapy intervention for Parkinson’s disease. Innov Clin Neurosci. 2015;12(9–10):25–8.
PubMed
PubMed Central
Google Scholar
Cumper SK, Ahle GM, Liebman LS, Kellner CH. Electroconvulsive therapy (ECT) in Parkinson’s disease: ECS and dopamine enhancement. J ECT. 2014;30(2):122–4.
Article
PubMed
CAS
Google Scholar
Weintraub D, Elias WJ. The emerging role of transcranial magnetic resonance imaging-guided focused ultrasound in functional neurosurgery. Mov Disord Off J Mov Disord Soc. 2017;32(1):20–7.
Article
Google Scholar
Krishna V, Sammartino F, Rezai A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: advances in diagnosis and treatment. JAMA Neurol 2017
Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127(2):1031–48.
Article
PubMed
CAS
Google Scholar
Ali MM, Sellers KK, Fröhlich F. Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J Neurosci. 2013;33(27):11262–75.
Article
PubMed
CAS
Google Scholar
Ponce FA, Lozano AM. Chapter 16 - Deep brain stimulation: state of the art and novel stimulation targets. In: Björklund A, Cenci MA, editors. Progress in brain research [Internet]. Elsevier; 2010 [cited 2017 Dec 15]. p. 311–24. (Recent Advances in Parkinson’S Disease; vol. 184). Available from: http://www.sciencedirect.com/science/article/pii/S0079612310840166
Shukla AW, Okun MS. State of the art for deep brain stimulation therapy in movement disorders: a clinical and technological perspective. IEEE Rev Biomed Eng. 2016;9:219–33.
Article
Google Scholar
Lozano CS, Tam J, Lozano AM. The changing landscape of surgery for Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2017;30
Kurtis MM, Rajah T, Delgado LF, Dafsari HS. The effect of deep brain stimulation on the non-motor symptoms of Parkinson’s disease: a critical review of the current evidence. NPJ Park Dis. 2017;3:16024.
Article
Google Scholar
Hariz M. Deep brain stimulation: new techniques. Parkinsonism Relat Disord. 2014;20(Suppl 1):S192–6.
Article
PubMed
Google Scholar
Grill WM, Snyder AN, Miocinovic S. Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport. 2004;15(7):1137–40.
Article
PubMed
Google Scholar
Brittain J-S, Brown P. Oscillations and the basal ganglia: motor control and beyond. NeuroImage. 2014;85(Pt 2):637–47.
Article
PubMed
Google Scholar
Eusebio A, Thevathasan W, Gaynor LD, Pogosyan A, Bye E, Foltynie T, et al. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry. 2011;82(5):569–73.
Article
PubMed
CAS
Google Scholar
Kühn AA, Kupsch A, Schneider G-H, Brown P. Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur J Neurosci. 2006;23(7):1956–60.
Article
PubMed
Google Scholar
Kühn AA, Tsui A, Aziz T, Ray N, Brücke C, Kupsch A, et al. Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp Neurol. 2009;215(2):380–7.
Article
PubMed
Google Scholar
Ray NJ, Jenkinson N, Wang S, Holland P, Brittain JS, Joint C, et al. Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Exp Neurol. 2008;213(1):108–13.
Article
PubMed
CAS
Google Scholar
Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E, Hodaie M, et al. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol. 2006;96(6):3248–56.
Article
PubMed
Google Scholar
Fytagoridis A, Åström M, Wårdell K, Blomstedt P. Stimulation-induced side effects in the posterior subthalamic area: distribution, characteristics and visualization. Clin Neurol Neurosurg. 2013;115(1):65–71.
Article
PubMed
CAS
Google Scholar
Pollo C, Kaelin-Lang A, Oertel MF, Stieglitz L, Taub E, Fuhr P, et al. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain J Neurol. 2014;137(Pt 7):2015–26.
Article
Google Scholar
Dembek TA, Reker P, Visser-Vandewalle V, Wirths J, Treuer H, Klehr M, et al. Directional DBS increases side-effect thresholds-a prospective, double-blind trial. Mov Disord Off J Mov Disord Soc. 2017;32(10):1380–8.
Article
Google Scholar
Reker P, Dembek TA, Becker J, Visser-Vandewalle V, Timmermann L. Directional deep brain stimulation: a case of avoiding dysarthria with bipolar directional current steering. Parkinsonism Relat Disord. 2016;31:156–8.
Article
PubMed
Google Scholar
Steigerwald F, Müller L, Johannes S, Matthies C, Volkmann J. Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device. Mov Disord Off J Mov Disord Soc. 2016;31(8):1240–3.
Article
Google Scholar
Fernández-García C, Foffani G, Dileone M, Catalán-Alonso MJ, González-Hidalgo M, Barcía JA, et al. Directional local field potential recordings for symptom-specific optimization of deep brain stimulation. Mov Disord Off J Mov Disord Soc. 2017;32(4):626–8.
Article
Google Scholar
Tinkhauser G, Pogosyan A, Debove I, Nowacki A, Shah SA, Seidel K, et al. Directional local field potentials: a tool to optimize deep brain stimulation. Mov Disord Off J Mov Disord Soc. 2017 18;
Timmermann L, Jain R, Chen L, Maarouf M, Barbe MT, Allert N, et al. Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson’s disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol. 2015;14(7):693–701.
Article
PubMed
Google Scholar
Bour LJ, Lourens MAJ, Verhagen R, de Bie RMA, van den Munckhof P, Schuurman PR, et al. Directional recording of subthalamic spectral power densities in Parkinson’s disease and the effect of steering deep brain stimulation. Brain Stimulat. 2015;8(4):730–41.
Article
CAS
Google Scholar
Brittain J-S, Sharott A, Brown P. The highs and lows of beta activity in cortico-basal ganglia loops. Eur J Neurosci. 2014;39(11):1951–9.
Article
PubMed
PubMed Central
Google Scholar
Eusebio A, Cagnan H, Brown P. Does suppression of oscillatory synchronisation mediate some of the therapeutic effects of DBS in patients with Parkinson’s disease? Front Integr Neurosci [Internet]. 2012 [cited 2018 Feb 15];6. Available from: https://doi.org/10.3389/fnint.2012.00047/full
Hälbig TD, Tse W, Frisina PG, Baker BR, Hollander E, Shapiro H, et al. Subthalamic deep brain stimulation and impulse control in Parkinson’s disease. Eur J Neurol. 2009;16(4):493–7.
Article
PubMed
Google Scholar
Guehl D, Cuny E, Benazzouz A, Rougier A, Tison F, Machado S, et al. Side-effects of subthalamic stimulation in Parkinson’s disease: clinical evolution and predictive factors. Eur J Neurol. 2006;13(9):963–71.
Article
PubMed
CAS
Google Scholar
Little S, Tripoliti E, Beudel M, Pogosyan A, Cagnan H, Herz D, et al. Adaptive deep brain stimulation for Parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J Neurol Neurosurg Psychiatry. 2016;87(12):1388–9.
Article
PubMed
PubMed Central
Google Scholar
•• Cagnan H, Pedrosa D, Little S, Pogosyan A, Cheeran B, Aziz T, et al. Stimulating at the right time: phase-specific deep brain stimulation. Brain J Neurol. 2017;140(1):132–45. First demonstration in humans of the effectiveness of phase-specific closed-loop stimulation during DBS.
Article
Google Scholar
Baizabal-Carvallo JF, Alonso-Juarez M. Low-frequency deep brain stimulation for movement disorders. Parkinsonism Relat Disord. 2016;31(Supplement C):14–22.
Article
PubMed
Google Scholar
Eusebio A, Chen CC, Lu CS, Lee ST, Tsai CH, Limousin P, et al. Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson’s disease. Exp Neurol. 2008;209(1):125–30.
Article
PubMed
PubMed Central
Google Scholar
Kelley R, Flouty O, Emmons EB, Kim Y, Kingyon J, Wessel JR, et al. A human prefrontal-subthalamic circuit for cognitive control. Brain [Internet]. [cited 2017 Dec 14]; Available from: https://doi.org/10.1093/brain/awx300/4665976
Cagnan H, Little S, Foltynie T, Limousin P, Zrinzo L, Hariz M, et al. The nature of tremor circuits in parkinsonian and essential tremor. Brain J Neurol. 2014;137(Pt 12):3223–34.
Article
Google Scholar
Cagnan H, Brittain J-S, Little S, Foltynie T, Limousin P, Zrinzo L, et al. Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation. Brain J Neurol. 2013;136(Pt 10):3062–75.
Article
Google Scholar
Swan BD, Brocker DT, Hilliard JD, Tatter SB, Gross RE, Turner DA, et al. Short pauses in thalamic deep brain stimulation promote tremor and neuronal bursting. Clin Neurophysiol. 2016;127(2):1551–9.
Article
PubMed
Google Scholar
Brittain J-S, Cagnan H, Mehta AR, Saifee TA, Edwards MJ, Brown P. Distinguishing the central drive to tremor in Parkinson’s disease and essential tremor. J Neurosci. 2015;35(2):795–806.
Article
PubMed
PubMed Central
CAS
Google Scholar
di Biase L, Brittain J-S, Shah SA, Pedrosa DJ, Cagnan H, Mathy A, et al. Tremor stability index: a new tool for differential diagnosis in tremor syndromes. Brain J Neurol. 2017;140(7):1977–86.
Article
Google Scholar
Duval C, Daneault J-F, Hutchison WD, Sadikot AF. A brain network model explaining tremor in Parkinson’s disease. Neurobiol Dis. 2016;85(Supplement C):49–59.
Article
PubMed
Google Scholar
Dirkx MF,den Ouden HE, Aarts E, Timmer MHM, Bloem BR, et al. Dopamine controls Parkinson’s tremor by inhibiting the cerebellar thalamus. Brain 2017;140(3):721–734.
Algarni M, Fasano A. The overlap between essential tremor and Parkinson disease. Parkinsonism Relat Disord. 2018;46(Suppl 1):S101–4.
Article
PubMed
Google Scholar
Brittain J-S, Probert-Smith P, Aziz TZ, Brown P. Tremor suppression by rhythmic transcranial current stimulation. Curr Biol CB. 2013;23(5):436–40.
Article
PubMed
CAS
Google Scholar
Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998;9(10):2257–60.
Article
PubMed
CAS
Google Scholar
Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lefaucheur J-P, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2017;128(1):56–92.
Article
Google Scholar
Benninger DH, Hallett M. Non-invasive brain stimulation for Parkinson’s disease: current concepts and outlook 2015. NeuroRehabilitation. 2015;37(1):11–24.
Article
PubMed
Google Scholar
Winkler C, Reis J, Hoffmann N, Gellner A-K, Münkel C, Curado MR, et al. Anodal transcranial direct current stimulation enhances survival and integration of dopaminergic cell transplants in a rat Parkinson model. eNeuro. 2017;4(5):ENEURO.0063–17.2017.
Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry. 2011;17(1):37–53.
Google Scholar
• McLaren ME, Nissim NR, Woods AJ. The effects of medication use in transcranial direct current stimulation: a brief review. Brain Stimulat. 2017. Provides an important contemporary review of evidence concerning the effects of pharmacology on tDCS-induced excitability.
Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci. 2015;9:181.
PubMed
PubMed Central
Google Scholar
Nitsche MA, Lampe C, Antal A, Liebetanz D, Lang N, Tergau F, et al. Dopaminergic modulation of long-lasting direct current-induced cortical excitability changes in the human motor cortex. Eur J Neurosci. 2006;23(6):1651–7.
Article
PubMed
Google Scholar
Monte-Silva K, Liebetanz D, Grundey J, Paulus W, Nitsche MA. Dosage-dependent non-linear effect of l-dopa on human motor cortex plasticity. J Physiol. 2010;588(18):3415–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fresnoza S, Stiksrud E, Klinker F, Liebetanz D, Paulus W, Kuo M-F, et al. Dosage-dependent effect of dopamine D2 receptor activation on motor cortex plasticity in humans. J Neurosci. 2014;34(32):10701–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nitsche MA, Liebetanz D, Schlitterlau A, Henschke U, Fricke K, Frommann K, et al. GABAergic modulation of DC stimulation-induced motor cortex excitability shifts in humans. Eur J Neurosci. 2004;19(10):2720–6.
Article
PubMed
Google Scholar
Kim S, Stephenson MC, Morris PG, Jackson SR. tDCS-induced alterations in GABA concentration within primary motor cortex predict motor learning and motor memory: a 7 T magnetic resonance spectroscopy study. NeuroImage. 2014;99(100):237–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kabakov AY, Muller PA, Pascual-Leone A, Jensen FE, Rotenberg A. Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol. 2012;107(7):1881–9.
Article
PubMed
PubMed Central
Google Scholar
Radman T, Ramos RL, Brumberg JC, Bikson M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimulat. 2009;2(4):215–28. 228.e1–3
Article
Google Scholar
Rahman A, Reato D, Arlotti M, Gasca F, Datta A, Parra LC, et al. Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol. 2013;591(10):2563–78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial DC stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulat. 2009;2(4):201–7.
Article
Google Scholar
Gbadeyan O, Steinhauser M, McMahon K, Meinzer M. Safety, tolerability, blinding efficacy and behavioural effects of a novel MRI-compatible, high-definition tDCS set-up. Brain Stimul Basic Transl Clin Res Neuromodulation. 2016;9(4):545–52.
Google Scholar
Dannhauer M, Brooks D, Tucker D, MacLeod R. A Pipeline for the simulation of transcranial direct current stimulation for realistic human head models using SCIRun/BioMesh3D. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2012. p. 5486–9.
Ruffini G, Fox MD, Ripolles O, Miranda PC, Pascual-Leone A. Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. NeuroImage. 2014;89(Supplement C):216–25.
Article
PubMed
Google Scholar
Krause V, Wach C, Südmeyer M, Ferrea S, Schnitzler A, Pollok B. Cortico-muscular coupling and motor performance are modulated by 20 Hz transcranial alternating current stimulation (tACS) in Parkinson’s disease. Front Hum Neurosci. 2013;7:928.
Article
PubMed
Google Scholar
Joundi RA, Jenkinson N, Brittain J-S, Aziz TZ, Brown P. Driving oscillatory activity in the human cortex enhances motor performance. Curr Biol CB. 2012;22(5):403–7.
Article
PubMed
CAS
Google Scholar
Pogosyan A, Gaynor LD, Eusebio A, Brown P. Boosting cortical activity at beta-band frequencies slows movement in humans. Curr Biol CB. 2009;19(19):1637–41.
Article
PubMed
CAS
Google Scholar
Shill HA, Obradov S, Katsnelson Y, Pizinger R. A randomized, double-blind trial of transcranial electrostimulation in early Parkinson’s disease. Mov Disord Off J Mov Disord Soc. 2011;26(8):1477–80.
Article
Google Scholar
Joundi RA, Brittain J-S, Green AL, Aziz TZ, Brown P, Jenkinson N. Persistent suppression of subthalamic beta-band activity during rhythmic finger tapping in Parkinson’s disease. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2013;124(3):565–73.
Article
Google Scholar
Timmermann L, Gross J, Dirks M, Volkmann J, Freund H-J, Schnitzler A. The cerebral oscillatory network of parkinsonian resting tremor. Brain. 2003;126(1):199–212.
Article
PubMed
Google Scholar
Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain J-S, Valero-Cabré A, et al. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: a position paper. Clin Neurophysiol Off J Int Fed Clin Neurophysiol. 2017;128(5):843–57.
Article
Google Scholar
Fröhlich F, McCormick DA. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67(1):129–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nowak M, Hinson E, van Ede F, Pogosyan A, Guerra A, Quinn A, et al. Driving human motor cortical oscillations leads to behaviorally relevant changes in local GABAA inhibition: a tACS-TMS study. J Neurosci. 2017;37(17):4481–92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guerra A, Pogosyan A, Nowak M, Tan H, Ferreri F, Di Lazzaro V, et al. Phase dependency of the human primary motor cortex and cholinergic inhibition cancelation during beta tACS. Cereb Cortex N Y NY. 2016;26(10):3977–90.
Article
Google Scholar
Helfrich RF, Knepper H, Nolte G, Strüber D, Rach S, Herrmann CS, et al. Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol. 2014;12(12):e1002031.
Article
PubMed
PubMed Central
Google Scholar
Strüber D, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS. Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception. Brain Topogr. 2014;27(1):158–71.
Article
PubMed
Google Scholar
Saturnino GB, Madsen KH, Siebner HR, Thielscher A. How to target inter-regional phase synchronization with dual-site transcranial alternating current stimulation. NeuroImage. 2017;163:68–80.
Article
PubMed
Google Scholar
Bächinger M, Zerbi V, Moisa M, Polania R, Liu Q, Mantini D, et al. Concurrent tACS-fMRI reveals causal influence of power synchronized neural activity on resting state fMRI connectivity. J Neurosci. 2017;37(18):4766–77.
Article
PubMed
Google Scholar
Khatoun A, Asamoah B, Laughlin MM. Simultaneously excitatory and inhibitory effects of transcranial alternating current stimulation revealed using selective pulse-train stimulation in the rat motor cortex. J Neurosci. 2017:1390–17.
Witkowski M, Garcia-Cossio E, Chander BS, Braun C, Birbaumer N, Robinson SE, et al. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS). NeuroImage. 2016;140:89–98.
Article
PubMed
Google Scholar
Dmochowski J, Bikson M. Noninvasive neuromodulation goes deep. Cell. 2017;169(6):977–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Dowsett J, Herrmann CS. Transcranial alternating current stimulation with sawtooth waves: simultaneous stimulation and EEG recording. Front Hum Neurosci [Internet]. 2016 Mar 29 [cited 2017 Dec 14];10. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809871/
•• Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, Suk H-J, et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell. 2017;169(6):1029–1041.e16. Introduced the temporal interference technique which enables non-invasive delivery of alternating current stimulation to deep regions of the brain.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lavano A, Guzzi G, DE Rose M, Romano M, Della Torre A, Vescio G, et al. Minimally invasive motor cortex stimulation for Parkinson’s disease. J Neurosurg Sci. 2017;61(1):77–87.
PubMed
Google Scholar
De Rose M, Guzzi G, Bosco D, Romano M, Lavano SM, Plastino M, et al. Motor cortex stimulation in Parkinson’s disease [Internet]. Neurology Research International. 2012 [cited 2017 Dec 15]. Available from: https://www.hindawi.com/journals/nri/2012/502096/
Horn A, Neumann W-J, Degen K, Schneider G-H, Kühn AA. Toward an electrophysiological ‘sweet spot’ for deep brain stimulation in the subthalamic nucleus. Hum Brain Mapp 2017
Suarez-Cedeno G, Suescun J, Schiess MC. Earlier intervention with deep brain stimulation for Parkinson’s disease. Park Dis. 2017;2017:9358153.
Google Scholar