Skip to main content
Log in

Turning of aluminum metal matrix composites: influence of the reinforcement and the cutting condition on the surface layer of the workpiece

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

Aluminum metal matrix composites (Al-MMCs) are difficult to machine. The reinforcement of aluminum using ceramic particles accelerates tool wear. Moreover, demanded machining accuracies or properties of the surface layer are difficult to achieve. In the present study, the effect of silicon carbide reinforcement particles on the surface layer of the workpiece was investigated using multiple cutting conditions for dry turning. Three differently reinforced Al-MMCs regarding the volume percentage (17% and 30%) and the particle size (0.6 µm and 3 µm) and their non-reinforced matrix were considered as the workpiece materials. The reinforcement and the cutting condition affect the results of turning. A greater particle volume percent improves the surface roughness and decreases the tensile stress in the surface. The smaller particle size caused a lower tensile stress in the surface. A general effect of the particle size on the workpiece roughness can not be concluded. The most important cutting parameter for the surface layer of the workpiece is the feed. Greater feeds decrease the tensile stress in the surface, but deteriorate the surface quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bian R, He N, Li L et al (2014) Precision milling of high volume fraction SiCp/Al composites with monocrystalline diamond end mill. Int J Adv Manuf Technol 71(1–4):411–419

    Article  Google Scholar 

  2. Tomac N, Tonnessen K (1992) Machinability of particulate aluminium matrix composites. CIRP Ann Manuf Technol 42(1):55–58

    Article  Google Scholar 

  3. Wang T, Xie L, Wang X et al (2015) PCD tool performance in high-speed milling of high volume fraction SiCp/Al composites. Int J Adv Manuf Technol 78(9):1445–1453

    Article  Google Scholar 

  4. Pramanik A, Zhang LC, Arsecularatne JA (2008) Machining of metal matrix composites: effect of ceramic particles on residual stress, surface roughness and chip formation. Int J Mach Tool Manuf 48(15):1613–1625

    Article  Google Scholar 

  5. Aurich JC, Zimmermann M, Schindler S et al (2016) Effect of the cutting condition and the reinforcement phase on the thermal load of the workpiece when dry turning aluminum metal matrix composites. Int J Adv Manuf Technol 82(5):1317–1334

    Article  Google Scholar 

  6. Yang Y, Wu Q, Zhan Z et al (2015) An experimental study on milling of high-volume fraction SiCp/Al composites with PCD tools of different grain size. Int J Adv Manuf Technol 79(9):1699–1705

    Article  Google Scholar 

  7. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal-matrix composites Part I: tool performance. J Mater Process Technol 83(1–3):151–158

    Article  Google Scholar 

  8. Shahzad MA (2010) Analysis of the machinability of an aluminum matrix composite material. Dissertation, University of Kaiserslautern

  9. Wang T, Xie L, Wang X (2015) Simulation study on defect formation mechanism of the machined surface in milling of high volume fraction SiCp/Al composite. Int J Adv Manuf Technol 79(5):1185–1194

    Article  Google Scholar 

  10. Ge YF, Xu JH, Yang H et al (2008) Workpiece surface quality when ultra-precision turning of SiCp/Al composites. J Mater Process Technol 203(1–3):166–175

    Article  Google Scholar 

  11. El-Gallab M, Sklad M (1998) Machining of Al/SiC particulate metal matrix composites. Part II: workpiece surface integrity. J Mater Process Technol 83(1–3):277–285

    Article  Google Scholar 

  12. Cheung CF, Chan KC, To S et al (2002) Effect of reinforcement in ultra-precision machining of Al6061/SiC metal matrix composites. Scripta Mater 47(2):77–82

    Article  Google Scholar 

  13. Kilickap E, Cakir O, Aksoy M et al (2005) Study of tool wear and surface roughness in machining of homogenized SiCp reinforced aluminium metal matrix composite. J Mater Process Technol 164–165:862–867

    Article  Google Scholar 

  14. Teti R (2002) Machining of composite materials. CIRP Ann Manuf Technol 51(2):611–634

    Article  Google Scholar 

  15. Dabade UA, Joshi SS, Balasubramaniam R et al (2007) Surface finish and integrity of machined surfaces on Al/SiCp composites. J Mater Process Technol 192–193:166–174

    Article  Google Scholar 

  16. Quan Y, Ye B (2003) The effect of machining on the surface properties of SiC/Al composites. J Mater Process Technol 138(1–3):464–467

    Article  Google Scholar 

  17. Schindler S, Zimmermann M, Aurich JC et al (2014) Thermo-elastic deformations of the workpiece when dry turning aluminum alloys-a finite element model to predict thermal effects in the workpiece. CIRP J Manuf Sci Technol 7(3):233–245

    Article  Google Scholar 

  18. Sikder S, Kishawy HA (2012) Analytical model for force prediction when machining metal matrix composite. Int J Mech Sci 59(1):95–103

    Article  Google Scholar 

  19. Dabade UA, Dapkekar D, Joshi SS (2009) Modeling of chip-tool interface friction to predict cutting forces in machining of Al/SiCp composites. Intern J Mach Tool Manuf 49(9):690–700

    Article  Google Scholar 

  20. Klocke F, König W (2008) Fertigungsverfahren, Drehen, Fräsen, Bohren. Springer, Berlin

    Google Scholar 

  21. Karthikeyan R, Ganesan G, Nagarazan RS et al (2001) A critical study on machining of Al/SiC composites. Mater Manuf Process 16(1):47–60

    Article  Google Scholar 

  22. Nakayama K, Arai M, Kanda T (1988) Machining characteristics of hard materials. CIRP Ann Manuf Technol 37(1):89–92

    Article  Google Scholar 

  23. Schulze V, Zanger F, Michna J et al (2011) Investigation of the machining behavior of metal matrix composites (MMC) using chip formation simulation. Adv Mat Res 223:20–29

    Article  Google Scholar 

  24. Denkena B, Biermann D (2014) Cutting edge geometries. CIRP Ann Manuf Technol 63(2):631–653

    Article  Google Scholar 

  25. Biermann D (1995) Untersuchungen zum Drehen von Aluminiummatrix-Verbundwerkstoffen. Dissertation, University of Dortmund

  26. Capello E (2005) Residual stresses in turning Part I: influence of the process parameters. J Mater Process Technol 160(2):221–228

    Article  Google Scholar 

  27. Breidenstein B (2011) Oberflächen und Randzonen hoch belasteter Bauteile. Dissertation, University of Hannover, Habilitation

Download references

Acknowledgments

The authors would like to thank the German research foundation (DFG) for funding the project “Thermal effects when turning Al-MMC-experiments and simulations AU 185/26, STE 544/42” within the priority program SPP 1480 and the state research focus advanced materials engineering (AME) at the University of Kaiserslautern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aurich, J.C., Zimmermann, M., Schindler, S. et al. Turning of aluminum metal matrix composites: influence of the reinforcement and the cutting condition on the surface layer of the workpiece. Adv. Manuf. 4, 225–236 (2016). https://doi.org/10.1007/s40436-016-0152-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-016-0152-7

Keywords

Navigation