Skip to main content
Log in

Continuous-time Lyapunov stability analysis and systematic parametrization of robust adaptive sliding mode controller for systems with matched and unmatched dynamics

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper presents the development of a continuous-time robust adaptive sliding mode controller using the model reference adaptive control philosophy. The stability analysis of the controller considering a system subjected to matched and unmatched dynamics is provided using the Lyapunov stability criterion. This control strategy can be applied to plants that are partially modeled, systems with uncertain parameters, or unmodeled dynamics. The stability analysis elucidates the controller constraints and proves that the tracking error tends to a small residual value, even in the presence of unmodeled dynamics (matched or unmatched). In addition, a systematic controller parametrization procedure based on the sine–cosine algorithm is presented to automate this task. Simulation results of the robust adaptive continuous-time sliding mode controller applied to an unstable non-minimum-phase system are presented. A comparison of this controller with a robust model reference adaptive controller is also presented, where the benefits of the adaptive sliding mode controller stand out, obtaining a superior performance that reduces relevantly the error metrics of 56.28%, 28.57%, and 14.79% for mean absolute error, mean squared error, and root mean squared error, respectively. Furthermore, a processor-in-the-loop experiment considering a complex real-world engineering problem is also provided to corroborate the controller performance and discuss its robustness, demonstrating its feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Availability of data and materials

The code that supports the findings of this study is available from the corresponding author upon reasonable request.

References

  1. Nguyen NT, Nguyen NT (2018) Model-reference Adaptive Control. Springer, USA

    Book  Google Scholar 

  2. Du X, Shi Y, Yang L-H, Sun X-M (2022) A method of multiple model adaptive control of affine systems and its application to aero-engines. J Frankl Inst 359(10):4727–4750

    Article  MathSciNet  Google Scholar 

  3. Wagner D, Henrion D, Hromčík M (2023) Advanced algorithms for verification and validation of flexible aircraft with adaptive control. J Guid Control Dyn 46(3):600–607

    Article  Google Scholar 

  4. Liu X, Zhang L, Luo C (2023) Model reference adaptive control for aero-engine based on system equilibrium manifold expansion model. Int J Control 96(4):884–899

    Article  Google Scholar 

  5. Sun X, Shen Q, Wu S (2023) Partial state feedback MRAC based reconfigurable fault-tolerant control of drag-free satellite with bounded estimation error. IEEE Trans Aerosp Electron Syst 59(5):6570–6586

    Google Scholar 

  6. Sun X-Y, Shen Q, Wu S-F (2023) Event-triggered robust model reference adaptive control for drag-free satellite. Adv Space Res 72(11):4984–4996

    Article  Google Scholar 

  7. Baldi S, Frasca P (2019) Adaptive synchronization of unknown heterogeneous agents: an adaptive virtual model reference approach. J Frankl Inst 356(2):935–955

    Article  MathSciNet  Google Scholar 

  8. Zhou X, Wang Z, Shen H, Wang J (2022) Yaw-rate-tracking-based automated vehicle path following: an mrac methodology with a closed-loop reference model. ASME Lett Dyn Syst Control 2(2):21010

    Article  Google Scholar 

  9. Zhang D, Wei B (2017) A review on model reference adaptive control of robotic manipulators. Annu Rev Control 43:188–198

    Article  Google Scholar 

  10. Lyu W, Zhai D-H, Xiong Y, Xia Y (2021) Predefined performance adaptive control of robotic manipulators with dynamic uncertainties and input saturation constraints. J Frankl Inst 358(14):7142–7169

    Article  MathSciNet  Google Scholar 

  11. Tamizi MG, Kashani AAA, Azad FA, Kalhor A, Masouleh MT (2022) Experimental study on a novel simultaneous control and identification of a 3-DOF delta robot using model reference adaptive control. Eur J Control 67:100715

    Article  MathSciNet  Google Scholar 

  12. Seghiri T, Ladaci S, Haddad S (2023) Fractional order adaptive MRAC controller design for high-accuracy position control of an industrial robot arm. Int J Adv Mechatron Syst 10(1):8–20

    Article  Google Scholar 

  13. Lui DG, Petrillo A, Santini S (2021) Distributed model reference adaptive containment control of heterogeneous multi-agent systems with unknown uncertainties and directed topologies. J Frankl Inst 358(1):737–756

    Article  MathSciNet  Google Scholar 

  14. Yang R, Li Y, Zhou D, Feng Z (2022) Cooperative tracking problem of unknown discrete-time MIMO multi-agent systems with switching topologies. Nonlinear Dyn 110(3):2501–2516

    Article  Google Scholar 

  15. Naleini MN, Koru AT, Lewis FL (2023) Leader-following consensus of a class of heterogeneous uncertain multi-agent systems with a distributed model reference adaptive control law. Int J Adapt Control Signal Process 37(6):1582–1591

    Article  MathSciNet  Google Scholar 

  16. Zeinali S, Shahrokhi M (2019) Adaptive control strategy for treatment of hepatitis C infection. Ind Eng Chem Res 58(33):15262–15270

    Article  Google Scholar 

  17. Ghezala AA, Sentouh C, Pudlo P (2022) Direct model-reference adaptive control for wheelchair simulator control via a haptic interface. IFAC-PapersOnLine 55(29):49–54

    Article  Google Scholar 

  18. Toro-Ossaba A, Tejada JC, Rúa S, Núñez JD, Peña A (2024) Myoelectric model reference adaptive control with adaptive kalman filter for a soft elbow exoskeleton. Control Eng Pract 142:105774

    Article  Google Scholar 

  19. Evald PJDO, Tambara RV, Gründling HA (2020) A direct discrete-time reduced order robust model reference adaptive control for grid-tied power converters with LCL filter. Braz J Power Electron 25(3):361–372

    Google Scholar 

  20. Evald PJDO, Hollweg V, Tambara RV, Gründling HA (2021) A new discrete-time PI-RMRAC for grid-side currents control of grid-tied three-phase power converter. Int Trans Electr Energy Syst Spec Issue Control Power Renew Energy Syst 31(10):12982

    Google Scholar 

  21. Travieso-Torres JC, Ricaldi-Morales A, Véliz-Tejo A, Leiva-Silva F (2023) Robust cascade MRAC for a hybrid grid-connected renewable energy system. Processes 11(6):1774

    Article  Google Scholar 

  22. Singh DK, Akella AK, Manna S (2023) A novel robust maximum power extraction framework for sustainable pv system using incremental conductance based mrac technique. Environ Prog Sustain Energy 14137

  23. Whitaker HP, Yamron J, Kezer A (1958) Design of model reference adaptive controller systems for aircraft. Massachusetts Institute of Technology: Jackson and Moreland, Cambridge University

  24. Sun J (1993) A modified model reference adaptive control scheme for improved transient perfomance. IEEE Trans Autom Control 38(8):1255–1259

    Article  Google Scholar 

  25. Datta A, Ioannou PA (1994) Perfomance analysis and improvemnet in model reference adaptive control. IEEE Trans Autom Control 39(12):2370–2387

    Article  Google Scholar 

  26. Anderson BDO (2005) Failures of adaptive control theory and their resolution. Commun Inf Syst 5(1):1–20

    Article  MathSciNet  Google Scholar 

  27. Sarhadi P, Noei AR, Khosravi A (2016) Model reference adaptive PID control with anti-windup compensator for an autonomous underwater vehicle. Robot Auton Syst 83:87–93

    Article  Google Scholar 

  28. Subramanian RG, Elumalai VK, Karuppusamy S, Canchi VK (2017) Uniform ultimate bounded robust model reference adaptive PID control scheme for visual servoing. J Frankl Inst 354(4):1741–1758

    Article  MathSciNet  Google Scholar 

  29. Shamseldin MA, Sallam M, Bassiuny AH, Ghany AMA (2019) A novel self-tuning fractional order pid control based on optimal model reference adaptive system. Int J Power Electron Drive Syst 10(1):230

    Google Scholar 

  30. Evald PJDO, Hollweg GV, Tambara RV, Gründling HA (2021) A discrete-time robust adaptive PI controller for grid-connected voltage source converter with LCL filter. Braz J Power Electron 26(1):19–30

    Google Scholar 

  31. Rajesh R, Deepa S (2020) Design of direct MRAC augmented with 2 DoF PIDD controller: an application to speed control of a servo plant. J King Saud Univ Eng Sci 32(5):310–320

    Google Scholar 

  32. Evald PJDO, Hollweg GV, Tambara RV, Gründling HA (2022) Lyapunov stability analysis of a robust model reference adaptive PI controller for systems with matched and unmatched dynamics. J Frankl Inst 359:6659–6689

    Article  MathSciNet  Google Scholar 

  33. Evald PJDO, Hollweg GV, Tambara RV, Gründling HA (2023) A hybrid robust model reference adaptive controller and proportional integral controller without reference model for partially modeled systems. Int J Adapt Control Signal Process 37(8):2113–2132

    Article  MathSciNet  Google Scholar 

  34. Hyatt P, Johnson CC, Killpack MD (2020) Model reference predictive adaptive control for large-scale soft robots. Front Robot AI 7:558027

    Article  Google Scholar 

  35. Pezzato C, Ferrari R, Corbato CH (2020) A novel adaptive controller for robot manipulators based on active inference. IEEE Robot Autom Lett 5(2):2973–2980

    Article  Google Scholar 

  36. Milbradt DMC, Hollweg GV, Evald PJDO, da Silveira WB, Gründling HA (2022) A robust adaptive one sample ahead preview controller for grid-injected currents of a grid-tied power converter with an LCL filter. Int J Electr Power Energy Syst 142:108286

    Article  Google Scholar 

  37. Levant A (2003) Higher-order sliding modes, differentiation and output-feedback control. Int J Control 76(9–10):924–941

    Article  MathSciNet  Google Scholar 

  38. Oliveira TR, Peixoto AJ, Hsu L (2010) Sliding mode control of uncertain multivariable nonlinear systems with unknown control direction via switching and monitoring function. IEEE Trans Autom Control 55(4):1028–1034

    Article  MathSciNet  Google Scholar 

  39. Utkin V, Guldner J, Shi J (2017) Sliding mode control in electro-mechanical systems. CRC Press, USA

    Book  Google Scholar 

  40. Zhuang H, Sun Q, Chen Z, Zeng X (2021) Robust adaptive sliding mode attitude control for aircraft systems based on back-stepping method. Aerosp Sci Technol 118:107069

    Article  Google Scholar 

  41. Tambara RV, Scherer LG, Gründling HA ( 2018) A discrete-time mrac-sm applied to grid connected converters with LCL-filter. In: 19th workshop on control and modeling for power electronics (COMPEL). IEEE, pp 1– 6

  42. Coban R (2019) Adaptive backstepping sliding mode control with tuning functions for nonlinear uncertain systems. Int J Syst Sci 50(8):1517–1529

    Article  MathSciNet  Google Scholar 

  43. Wang H, Wang J, Chen X, Shi K, Shen H (2022) Adaptive sliding mode control for persistent dwell-time switched nonlinear systems with matched/mismatched uncertainties and its application. J Frankl Inst 359(2):967–980

    Article  MathSciNet  Google Scholar 

  44. Xu R, Liu Z, Liu Y (2022) State-estimation-based adaptive sliding mode control for a class of uncertain time-delay systems: a new design. Int J Syst Sci 53(2):375–387

    Article  MathSciNet  Google Scholar 

  45. Zhang X, Ma H, Luo M, Liu X (2020) Adaptive sliding mode control with information concentration estimator for a robot arm. Int J Syst Sci 51(2):217–228

    Article  MathSciNet  Google Scholar 

  46. Edwards C, Shtessel Y (2019) Enhanced continuous higher order sliding mode control with adaptation. J Frankl Inst 356(9):4773–4784

    Article  MathSciNet  Google Scholar 

  47. Liu J, Li X, Cai S, Chen W, Bai S (2019) Adaptive fuzzy sliding mode algorithm-based decentralised control for a permanent magnet spherical actuator. Int J Syst Sci 50(2):403–418

    Article  MathSciNet  Google Scholar 

  48. Fesharaki SJ, Sheikholeslam F, Kamali M, Talebi A (2020) Tractable robust model predictive control with adaptive sliding mode for uncertain nonlinear systems. Int J Syst Sci 51(12):2204–2216

    Article  MathSciNet  Google Scholar 

  49. Mousavi A, Markazi AHD (2021) A predictive approach to adaptive fuzzy sliding-mode control of under-actuated nonlinear systems with input saturation. Int J Syst Sci 52(8):1599–1617

    Article  MathSciNet  Google Scholar 

  50. Nhu Ngoc Thanh HL, Vu MT, Nguyen NP, Mung NX, Hong SK (2021) Finite-time stability of mimo nonlinear systems based on robust adaptive sliding control: Methodology and application to stabilize chaotic motions. IEEE Access 9:21759– 21768

  51. Hollweg GV, Evald PJDO, Milbradt DMC, Tambara RV, Gründling HA (2022) Design of continuous-time model reference adaptive and super-twisting sliding mode controller. Math Comput Simul 201:215–238

    Article  MathSciNet  Google Scholar 

  52. Wang Y, Zhang Z, Li C, Buss M (2022) Adaptive incremental sliding mode control for a robot manipulator. Mechatronics 82:102717

    Article  Google Scholar 

  53. Liu Z, Chen X, Yu J (2022) Adaptive sliding mode security control for stochastic markov jump cyber-physical nonlinear systems subject to actuator failures and randomly occurring injection attacks. IEEE Trans Ind Inform 19(3):3155–3165

    Article  Google Scholar 

  54. Hollweg GV, Evald PJDO, Milbradt DMC, Tambara RV, Gründling HA (2023) Lyapunov stability analysis of discrete-time robust adaptive super-twisting sliding mode controller. Int J Control 96(3):614–627

    Article  MathSciNet  Google Scholar 

  55. Qi W, Yang X, Park JH, Cao J, Cheng J (2021) Fuzzy SMC for quantized nonlinear stochastic switching systems with semi-markovian process and application. IEEE Trans Cybern 52(9):9316–9325

    Article  Google Scholar 

  56. Abro GEM, Zulkifli SAB, Asirvadam VS, Ali ZA (2021) Model-free-based single-dimension fuzzy SMC design for underactuated quadrotor UAV. In: Actuators. MDPI, vol 10, p 191

  57. Zhang M, Zhang J (2022) Fuzzy SMC method for active suspension systems with non-ideal inputs based on a bioinspired reference model. IFAC-PapersOnLine 55(27):404–409

    Article  Google Scholar 

  58. Rossomando F, Rosales C, Gimenez J, Salinas L, Soria C, Sarcinelli-Filho M, Carelli R (2020) Aerial load transportation with multiple quadrotors based on a kinematic controller and a neural SMC dynamic compensation. J Intell Robot Syst 100:519–530

    Article  Google Scholar 

  59. Akermi K, Chouraqui S, Boudaa B (2020) Novel SMC control design for path following of autonomous vehicles with uncertainties and mismatched disturbances. Int J Dyn Control 8(1):254–268

    Article  MathSciNet  Google Scholar 

  60. Feng H, Song Q, Ma S, Ma W, Yin C, Cao D, Yu H (2022) A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system. ISA Trans 129:472–484

    Article  Google Scholar 

  61. Fei J, Wang Z, Pan Q (2023) Self-constructing fuzzy neural fractional-order sliding mode control of active power filter. IEEE Trans Neural Netw Learn Syst 34(12):10600–10611

    Article  MathSciNet  Google Scholar 

  62. El Masri A, Daher N (2023) Cascaded sliding mode voltage controller and model reference adaptive current controller for regulating a mimo DC-DC boost converter. In: 4th international multidisciplinary conference on engineering technology (IMCET). IEEE, pp 157– 162

  63. Zhang T, Li X, Gai H, Zhu Y, Cheng X (2023) Integrated controller design and application for CNC machine tool servo systems based on model reference adaptive control and adaptive sliding mode control. Sensors 23(24):9755

    Article  Google Scholar 

  64. Javad Mahmoodabadi M, Mehdi Shahangian M, Nejadkourki N (2021) An optimal MRAC-ASMC scheme for robot manipulators based on the artificial bee colony algorithm. Trans Can Soc Mech Eng 45(3):487–495

    Article  Google Scholar 

  65. Ioannou P, Tsakalis K (1986) A robust direct adaptive controller. IEEE Trans Autom Control 31(11):1033–1043

    Article  Google Scholar 

  66. Hsu L, Araujo RR, Costa RR (1994) Adaptive control with sliding modes: theory and applications. IEEE Trans Autom Control 39(1):4–21

    Google Scholar 

  67. Ioannou P, Tsakalis K ( 1986) A robust discrete-time adaptive controller. In: 25th IEEE conference on decision and control (CDC). IEEE, pp 838– 843

  68. Praly L ( 1984) Robust model reference adaptive controllers, part I: stability analysis. In: 23rd IIEEE conference on decision and Control (CDC), pp 1009–1014

  69. Ioannou PA, Sun J (2012) Robust adaptive control. Courier Corporation, Massachusetts, USA

    Google Scholar 

  70. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl Based Syst 96:120–133

  71. Narendra KS (2013) Adaptive and learning systems: theory and applications. Springer, USA

    Google Scholar 

  72. Vardhan H, Akin B, Jin H (2016) A low-cost, high-fidelity processor-in-the loop platform: for rapid prototyping of power electronics circuits and motor drives. IEEE Power Electron Mag 3(2):18–28

    Article  Google Scholar 

  73. Cardoso R, de Camargo RF, Pinheiro H, Gründling HA (2008) Kalman filter based synchronisation methods. IET Gener Transm Distrib 2(4):542–555

  74. Michels L, De Camargo R, Botteron F, Grüdling H, Pinheiro H (2006) Generalised design methodology of second-order filters for voltage-source inverters with space-vector modulation. IEE Proc Electr Power Appl 153(2):219–226

    Article  Google Scholar 

  75. Hollweg GV, Evald PDO, Varella Tambara R, Abílio Gründling H (2023) Adaptive super-twisting sliding mode for DC-AC converters in very weak grids. Int J Electron 110(10):1808–1833

    Article  Google Scholar 

  76. Li H, Wu W, Huang M, Chung HS-h, Liserre M, Blaabjerg F, (2020) Design of pwm-smc controller using linearized model for grid-connected inverter with lcl filter. IEEE Trans Power Electron 35(12):12773–12786

  77. Mattos E, Borin LC, Osório CRD, Koch GG, Oliveira RC, Montagner VF (2022) Robust optimized current controller based on a two-step procedure for grid-connected converters. IEEE Trans Ind Appl 59(1):1024–1034

    Article  Google Scholar 

  78. Hollweg GV, Evald PJDO, Mattos E, Borin LC, Tambara RV, Gründling HA, Su W (2024) A direct adaptive controller with harmonic compensation for grid-connected converters. IEEE Trans Ind Electron 71(3):2978–2989

    Article  Google Scholar 

  79. Liserre M, Blaabjerg F, Hansen S (2005) Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans Ind Appl 41(5):1281–1291

    Article  Google Scholar 

  80. Reznik A, Simões MG, Al-Durra A, Muyeen SM (2013) \( lcl \) filter design and performance analysis for grid-interconnected systems. IEEE Trans Ind Appl 50(2):1225–1232

    Article  Google Scholar 

  81. Hollweg GV, Evald PJDO, Tambara RV, Gründling HA (2022) A robust adaptive super-twisting sliding mode controller applied on grid-tied power converter with an LCL filter. Control Eng Pract 122:105104

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and the anonymous reviewers for their valuable comments and suggestions to improve the quality of this paper.

Funding

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior under Grant 001; CNPq under Grant 465640/2014-1, CNPq under Grant 424997/2016-9, CAPES under Grant 23038.00 0776/2017-54 and FAPERGS under Grant 17/2551-0000517-1.

Author information

Authors and Affiliations

Authors

Contributions

Contributions were omitted to preserve anonymity in the review.

Corresponding author

Correspondence to Paulo Jefferson Dias de Oliveira Evald.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior under Grant 001; CNPq under Grant 465640/2014-1, CNPq under Grant 424997/2016-9, CAPES under Grant 23038.00 0776/2017-54 and FAPERGS under Grant 17/2551-0000517-1.

Appendix A - Lemma 2

Appendix A - Lemma 2

This appendix presents Lemma 2, which contains useful results for the stability analysis of the continuous-time RMRAC-SM.

Lemma 2

The value of \(2\sigma \varvec{\phi } \varvec{\theta } \) is greater or, at maximum, equal to zero.

Proof

Let

$$\begin{aligned} {\left\| {{\varvec{\theta } ^*}} \right\| ^2}{} & {} = {\varvec{\theta } ^*}^T{\varvec{\theta } ^*} = {(\;\varvec{\theta } - \varvec{\phi } )^T}(\varvec{\theta } - \varvec{\phi } )\; \nonumber \\ {}{} & {} = \;{\varvec{\theta } ^T}\varvec{\theta } - 2{\varvec{\phi } ^T}\varvec{\theta } + {\varvec{\phi } ^T}\varvec{\phi }, \end{aligned}$$
(73)

or yet,

$$\begin{aligned} 2{\varvec{\phi } ^T}\varvec{\theta } = \;\;{\left\| \varvec{\theta } \right\| ^2}\; + \;{\left\| \varvec{\phi } \right\| ^2}\;\; - \;{\left\| {{\varvec{\theta } ^*}} \right\| ^2}. \end{aligned}$$
(74)

From (74), it is written as the following inequality, \(2{\varvec{\phi } ^T}\varvec{\theta } \ge {\left\| \varvec{\theta } \right\| ^2} - {\left\| {{\varvec{\theta } ^*}} \right\| ^2}\), which can be expressed as

$$\begin{aligned} 2\sigma {\varvec{\phi } ^T}\varvec{\theta } \ge \sigma \left( {{{\left\| \varvec{\theta } \right\| }^{2}} - {{\left\| {{\varvec{\theta } {^*}}} \right\| }^{2}}} \right) . \end{aligned}$$
(75)

From (36) and (75), it can be concluded

$$\begin{aligned} \left\{ \begin{matrix} 2\sigma {{\bar{\varvec{\phi }} }^T}\bar{\varvec{\theta }}> 0&{}\mathrm{{ if }} &{}\left\| {\bar{\varvec{\theta }} } \right\| \ge 2{M_0}\\ 2\sigma {{\bar{\varvec{\phi }} }^T}\bar{\varvec{\theta }} > 0&{}\mathrm{{ if }}&{}{M_0}\mathrm{{< }}\left\| {\bar{\varvec{\theta }} } \right\| < 2{M_0}.\\ 2\sigma {{\bar{\varvec{\phi }} }^T}\bar{\varvec{\theta }} = 0&{}\mathrm{{ if }}&{}\left\| {\bar{\varvec{\theta }} } \right\| \le {M_0} \end{matrix} \right. \end{aligned}$$
(76)

Therefore, \(2\sigma {\varvec{\phi } ^T}\varvec{\theta } \ge 0\).

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milbradt, D.M.C., de Oliveira Evald, P.J.D., Hollweg, G.V. et al. Continuous-time Lyapunov stability analysis and systematic parametrization of robust adaptive sliding mode controller for systems with matched and unmatched dynamics. Int. J. Dynam. Control (2024). https://doi.org/10.1007/s40435-024-01437-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40435-024-01437-0

Keywords

Navigation