Skip to main content
Log in

Dynamic analysis of a slow-fast oscillator based on a coupled Duffing memristive system

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

The dynamic natural processes which occur in the world terrestrial system are highly nonlinear and exhibit unpredictable oscillations and behaviors. One way to imitate and follow the essential characteristics of these processes is a similar study of the nonlinear dynamics of two subsystems whose evolution is fast and slow, respectively. These dynamic systems are commonly used to describe various aspects of the dynamics of natural disasters in order to predict a solution. This article examines the dynamic properties and phenomena of a slow–fast 4D system consisting of the Duffing equation coupled to a proposed memristive system. The dynamics of the obtained system reveals the presence of multistability which is an unpredictable phenomenon whose different coexisting states must be quantified in order to adopt a means of control for better forecasting of disasters. Furthermore, the effect and strength of the coupling parameter on the interaction between the slow–fast dynamics of the subsystems is observed. Other dynamic properties such as offset boosting and bursting oscillations are also observed, further justifying the complexity of the system. An analog validation of the mathematical model is proposed through PSpice simulations of the corresponding electronic circuit, and the results sufficiently justify the feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Schmid-Schönbein H (1996) Physiological synergetics: A holistic concept concerning phase jumps in the behavior of driven nonlinear systems. In: Greger R, Windhorst U (eds) Comprehensive human physiology. Springer, Berlin, pp 43–67

    Google Scholar 

  2. Vorpahl F, Schwarze H, Fischer T, Seidel M, Jonkman J (2013) Offshore wind turbine environment, loads, simulation, and design. Wiley Interdiscip Rev Energy Environ 2(5):548–570

    Google Scholar 

  3. El-Nabulsi RA (2014) A generalized nonlinear oscillator from non-standard degenerate Lagrangians and its consequent Hamiltonian formalism. Proc Natl Acad Sci India Sect A 84(4):563–569

    MathSciNet  MATH  Google Scholar 

  4. Hassan TS, El-Nabulsi RA, Abdel Menaem A (2021) Amended criteria of oscillation for nonlinear functional dynamic equations of second-order. Mathematics 9(11):1191

    Google Scholar 

  5. El-Nabulsi RA (2014) Fractional oscillators from non-standard Lagrangians and time-dependent fractional exponent. Comput Appl Math 33(1):163–179

    MathSciNet  MATH  Google Scholar 

  6. Mbé JHT, Talla AF, Chengui GRG, Coillet A, Larger L, Woafo P, Chembo YK (2015) Mixed-mode oscillations in slow-fast delayed optoelectronic systems. Phys Rev E 91(1):012902

    Google Scholar 

  7. Peña M, Kalnay E (2004) Separating fast and slow modes in coupled chaotic systems. Nonlinear Process Geophys 11(3):319–327

    Google Scholar 

  8. Kovacic I, Brennan MJ (2011) The Duffing equation: nonlinear oscillators and their behaviour. John Wiley & Sons

    MATH  Google Scholar 

  9. Tchakui MV, Woafo P (2016) Dynamics of three unidirectionally coupled autonomous Duffing oscillators and application to inchworm piezoelectric motors: Effects of the coupling coefficient and delay. Chaos Interdiscip J Nonlinear Sci 26(11):113108

    MATH  Google Scholar 

  10. Kenfack A (2003) Bifurcation structure of two coupled periodically driven double-well Duffing oscillators. Chaos Solitons Fractals 15(2):205–218

    MathSciNet  MATH  Google Scholar 

  11. Estévez PG, Kuru Ş, Negro J, Nieto LM (2011) Solutions of a class of Duffing oscillators with variable coefficients. Int J Theor Phys 50(7):2046–2056

    MathSciNet  MATH  Google Scholar 

  12. Baltanas JP, Trueba JL, Sanjuan MA (2001) Energy dissipation in a nonlinearly damped Duffing oscillator. Physica D 159(1–2):22–34

    MATH  Google Scholar 

  13. El-Nabulsi RA, Anukool W (2022) A new approach to nonlinear quartic oscillators. Arch Appl Mech 92(1):351–362

    Google Scholar 

  14. Soldatenko SERGEI, Chichkine DENIS (2014) Basic properties of slow-fast nonlinear dynamical system in the atmosphere-ocean aggregate modeling. WSEAS Trans Syst 13:757–766

    MATH  Google Scholar 

  15. Weicker L, Erneux T, d’Huys O, Danckaert J, Jacquot M, Chembo Y (1999) Larger L (2013) slow–fast dynamics of a time-delayed electro-optic oscillator. Philos Trans Royal Soc Math Phys Eng Sci 371:20120459

    MATH  Google Scholar 

  16. Marino F, Marin F (2013) Coexisting attractors and chaotic canard explosions in a slow-fast optomechanical system. Phys Rev E 87(5):052906

    Google Scholar 

  17. Chua L (1971) (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

    Google Scholar 

  18. Chanthbouala A, Garcia V, Cherifi RO, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur ND, Bibes M, Barthélémy A, Grollier JC (2012) A ferroelectric memristor. Nat Mater 11(10):860–864

    Google Scholar 

  19. Liao X, Mu N (2019) Self-sustained oscillation in a memristor circuit. Nonlinear Dyn 96(2):1267–1281

    MATH  Google Scholar 

  20. Zhang W, Mazzarello R, Wuttig M, Ma E (2019) Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat Rev Mater 4(3):150–168

    Google Scholar 

  21. Romero FJ, Ohata A, Toral-Lopez A, Godoy A, Morales DP, Rodriguez N (2021) Memcapacitor and meminductor circuit emulators: A review. Electronics 10(11):1225

    Google Scholar 

  22. Fouda M, Khatib M, Radwan A (2013) On the mathematical modeling of series and parallel memcapacitors. In: 2013 25th International Conference on Microelectronics (ICM). IEEE

  23. Di Ventra M, Pershin YV, Chua LO (2009) Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc IEEE 97(10):1717–1724

    Google Scholar 

  24. Zhou W, Wang G, Iu HHC, Shen Y, Liang Y (2020) Complex dynamics of a non-volatile memcapacitor-aided hyperchaotic oscillator. Nonlinear Dyn 100(4):3937–3957

    Google Scholar 

  25. Yu DS, Liang Y, Chen H, Iu HH (2013) Design of a practical memcapacitor emulator without grounded restriction. IEEE Trans Circuits Syst II Express Briefs 60(4):207–211

    Google Scholar 

  26. Tagne RL, Kengne J, Negou AN (2019) Multistability and chaotic dynamics of a simple Jerk system with a smoothly tuneable symmetry and nonlinearity. Int J Dynam Control 7(2):476–495

    MathSciNet  Google Scholar 

  27. Tagne Mogue RL, Folifack Signing VR, Kengne J, Kountchou M, Njitacke ZT (2021) Complex behavior of a hyperchaotic TNC oscillator: coexisting bursting, space magnetization, control of multistability and application in image encryption based on DNA coding. Int J Bifurcation Chaos 31(09):2150126

    MathSciNet  MATH  Google Scholar 

  28. Kamdjeu Kengne L, Kengne J, Mboupda Pone JR, Kamdem Tagne HT (2020) Dynamics, control and symmetry breaking aspects of an infinite-equilibrium chaotic system. Int J Dynam Control 8(3):741–758

    MathSciNet  MATH  Google Scholar 

  29. Doubla IS, Njitacke ZT, Ekonde S, Tsafack N, Nkapkop JDD, Kengne J (2021) Multistability and circuit implementation of tabu learning two-neuron model: application to secure biomedical images in IoMT. Neural Comput Appl 33(21):14945–14973

    Google Scholar 

  30. Kountchou M, Signing VF, Mogue RT, Kengne J, Louodop P (2020) Complex dynamic behaviors in a new Colpitts oscillator topology based on a voltage comparator. AEU Int J Electron Commun 116:153072

    Google Scholar 

  31. Kountchou M, Folifack Signing VR, Tagne Mogue RL, Kengne J (2021) Complex dynamical behaviors in a memcapacitor–inductor circuit. Analog Integr Circ Sig Process 106(3):615–634

    MATH  Google Scholar 

  32. Kengne J, Abdolmohammadi H, Signing VF, Jafari S, Kom GH (2020) Chaos and coexisting bifurcations in a novel 3d autonomous system with a non-hyperbolic fixed point: theoretical analysis and electronic circuit implementation. Braz J Phys 50(4):442–453

    Google Scholar 

  33. Folifack Signing VR, Kengne J (2019) Reversal of period-doubling and extreme multistability in a novel 4D chaotic system with hyperbolic cosine nonlinearity. Int J Dynam Control 7(2):439–451

    MathSciNet  Google Scholar 

  34. Signing VRF, Kengne J, Kana LK (2018) Dynamic analysis and multistability of a novel four-wing chaotic system with smooth piecewise quadratic nonlinearity. Chaos Solitons Fractals 113:263–274

    MathSciNet  MATH  Google Scholar 

  35. Folifack Signing VR, Kengne J (2018) Coexistence of hidden attractors, 2-torus and 3-torus in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity. Int J Dynam Control 6(4):1421–1428

    MathSciNet  Google Scholar 

  36. Kengne J, Njikam SM, Folifack Signing VR (2018) A plethora of coexisting strange attractors in a simple jerk system with hyperbolic tangent nonlinearity. Chaos Solitons Fractals Interdiscip J Nonlinear Sci Nonequilibrium Complex Phenom 106:201–213

    MathSciNet  MATH  Google Scholar 

  37. Righetti L, Buchli J, Ijspeert AJ (2021) Slow-fast dynamics of strongly coupled adaptive frequency oscillators. SIAM J Appl Dyn Syst 20(4):1985–2012

    MathSciNet  MATH  Google Scholar 

  38. Sabarathinam S, Volos CK, Thamilmaran K (2017) Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator. Nonlinear Dyn 87(1):37–49

    Google Scholar 

  39. XXXXX.

  40. Qian YH, Yan DM (2018) Fast–slow dynamics analysis of a coupled Duffing system with periodic excitation. Int J Bifurcation Chaos 28(12):1850148

    MathSciNet  MATH  Google Scholar 

  41. Kuehn C (2011) A mathematical framework for critical transitions: Bifurcations, fast–slow systems and stochastic dynamics. Physica D 240(12):1020–1035

    MATH  Google Scholar 

  42. Huang L, Wu G, Zhang Z, Bi Q (2019) Fast–slow dynamics and bifurcation mechanism in a novel chaotic system. Int J Bifurcation Chaos 29(10):1930028

    MathSciNet  MATH  Google Scholar 

  43. Zhou C, Xie F, Li Z (2020) Complex bursting patterns and fast-slow analysis in a smallest chemical reaction system with two slow parametric excitations. Chaos Solitons Fractals 137:109859

    MathSciNet  MATH  Google Scholar 

  44. Chua LO, Kang SM (1976) Memristive devices and systems. Proc IEEE 64(2):209–223

    MathSciNet  Google Scholar 

  45. Ma X, Mou J, Liu J, Ma C, Yang F, Zhao X (2020) A novel simple chaotic circuit based on memristor–memcapacitor. Nonlinear Dyn 100(3):2859–2876

    Google Scholar 

  46. Signing VF, Tegue GG, Kountchou M, Njitacke ZT, Tsafack N, Nkapkop JDD, Kengne J (2022) A cryptosystem based on a chameleon chaotic system and dynamic DNA coding. Chaos Solitons Fractals 155:111777

    MathSciNet  MATH  Google Scholar 

  47. Njitacke ZT, Feudjio C, Signing VF, Koumetio BN, Tsafack N, Awrejcewicz J (2022) Circuit and microcontroller validation of the extreme multistable dynamics of a memristive Jerk system: application to image encryption. Euro Phys J Plus 137(5):1–18

    Google Scholar 

  48. Leutcho GD, Fozin TF, Negou AN, Njitacke ZT, Pham VT, Kengne J, Jafari S, Aguilar-Ibanez C (2020) A novel megastable hamiltonian system with infinite hyperbolic and nonhyperbolic equilibria. Complexity 2020:1–12. https://doi.org/10.1155/2020/9260823

    Article  MATH  Google Scholar 

  49. Doubla IS, Kengne J, Tekam RBW, Njitacke ZT, Dagang CTS (2020) Effects of symmetric and asymmetric nonlinearity on the dynamics of a third-order autonomous Duffing–Holmes oscillator. Complexity 2020:1–26. https://doi.org/10.1155/2020/8891816

    Article  Google Scholar 

  50. Ngo Mouelas A, Fonzin Fozin T, Kengne R, Kengne J, Fotsin HB, Essimbi BZ (2020) Extremely rich dynamical behaviors in a simple nonautonomous Jerk system with generalized nonlinearity: Hyperchaos, intermittency, offset-boosting and multistability. Int J Dynam Control 8(1):51–69

    Google Scholar 

  51. Njitacke ZT, Mogue RL, Kengne J, Kountchou M, Fotsin HB (2020) Hysteretic dynamics, space magnetization and offset boosting in a third-order memristive system. Iranian J Sci Technol Trans Electrical Eng 44(1):413–429

    Google Scholar 

  52. Pérez-Cervera A, Hlinka J (2021) Perturbations both trigger and delay seizures due to generic properties of slow-fast relaxation oscillators. PLoS Comput Biol 17(3):e1008521

    Google Scholar 

  53. Mondal A, Mondal A, Sharma SK, Upadhyay RK, Antonopoulos CG (2021) Spatiotemporal characteristics in systems of diffusively coupled excitable slow–fast FitzHugh–Rinzel dynamical neurons. Chaos Interdiscip J Nonlinear Sci 31(10):103122. https://doi.org/10.1063/5.0055389

    Article  MathSciNet  Google Scholar 

  54. Kingni ST, Keuninckx L, Woafo P, Van der Sande G, Danckaert J (2013) Dissipative chaos, Shilnikov chaos and bursting oscillations in a three-dimensional autonomous system: theory and electronic implementation. Nonlinear Dyn 73(1):1111–1123

    MathSciNet  MATH  Google Scholar 

  55. Li BB, Yuan ZF (2008) Non-linear and chaos characteristics of heart sound time series. Proc Inst Mech Eng [H] 222(3):265–272

    Google Scholar 

  56. Simo H, Woafo P (2011) Bursting oscillations in electromechanical systems. Mech Res Commun 38(8):537–541

    MATH  Google Scholar 

  57. Zhang Y, Cao Q, Huang W (2021) Bursting oscillations in an isolation system with quasi-zero stiffness. Mech Syst Signal Process 161:107916

    Google Scholar 

  58. Deng Y, Li Y (2021) Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map. Chaos, Solitons Fractals 150:111064

    MathSciNet  Google Scholar 

  59. Kengne J, Negou AN, Tchiotsop D (2017) Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dyn 88(4):2589–2608

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from any funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

M. Kountchou Noube: conceptualization, investigation, analysis, project administration, supervision, writing–review and editing; V.R. Folifack Signing: analysis, investigation, validation, visualization, writing–original draft, writing–review and editing; H.B. Fotsin: supervision, read and approved the final manuscript.

Corresponding author

Correspondence to Michaux Kountchou Noube.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Availability of data and material

Not applicable.

Code Availability

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kountchou Noube, M., Folifack Signing, V.R. & Fotsin, H.B. Dynamic analysis of a slow-fast oscillator based on a coupled Duffing memristive system. Int. J. Dynam. Control 11, 453–472 (2023). https://doi.org/10.1007/s40435-022-01011-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-022-01011-6

Keywords

Navigation