Skip to main content
Log in

A new modified ESC algorithm for MPPT applied to a photovoltaic system for power losses mitigation under varying environmental conditions

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In order to maximize the efficiency of PV energy conversion systems, PV arrays should operate at maximum power points so as to minimize losses. In this paper, an intelligent control technique for maximum power point tracking (MPPT) based on a modified sinusoidal extremum seeking control (ESC) is proposed for a PV module connected to a DC–DC Boost converter. In the new method, an adaptive control of the classical ESC duty ratio is designed to perfectly and quickly match the MPP during rapid change in irradiance or load. The proposed control scheme consists of a sinusoidal ESC modulated by an additional algorithm in order to accurately and quickly match the MPP during rapid changes in irradiance or system load. The stability of the proposed algorithm is analysed using Lyapunov theory. The ability to achieve the MPP with the proposed MPPT method is investigated through simulations in MATLAB/Simulink environment, and the results are compared to those of some recent methods namely, fast incremental conductance, classical ESC, adaptive ESC, modified ESC and estimated-based ESC methods. In addition, the experimental results of a real-time implementation of the proposed controller using the Arduino board are presented. From the results analysis, the proposed method has provided better performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Beauvais A, Chevillard N, Paredes MG, Heisz M, Rossi R, Schmela M (2019) Global market outlook for solar power/2019–2023: Power FS. Mobilising Investments in Emerging Markets. Sol Power Eur

  2. Mills AD, Wiser RH (2013) Changes in the economic value of photovoltaic generation at high penetration levels: a pilot case study of California. IEEE J Photovoltaics 3(4):1394–1402

    Article  Google Scholar 

  3. Yu T-C, Chien T-S (2009) Analysis and simulation of characteristics and maximum power point tracking for photovoltaic systems, Proceedings of Power Electronics and Drive Systems Conference, 1339–1344, Taipei

  4. Esram T, Chapman PL (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Conv 22(2):439–449

    Article  Google Scholar 

  5. Wanzeller MG et al (2004) Current control loop for tracking of maximum power point supplied for photovoltaic array. IEEE Trans Instrum Measurement 53:1304–1310

    Article  Google Scholar 

  6. Faranda R, Leva S (2008) Energy comparison of mppt techniques for pv systems. WSEAS Trans Power Syst 3(6):1–6

    Google Scholar 

  7. Brunton SL, Rowley CW, Kulkarni SR, Clarkson C (2010) Maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control. IEEE Trans Power Electron 25(10):2531–2540

    Article  Google Scholar 

  8. Liu F, Kang Y, Zhang Y, Duan S (2008) Comparison of p&o and hill climbing mppt methods for grid-connected pv converter. In Industrial Electronics and Applications, 2008. ICIEA 2008. 3rd IEEE Conference on, pp. 804–807

  9. Reisi AR, Moradi MH, Jamasb S (2013) Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review. Renew Sustain Energy Rev 19:433–443

    Article  Google Scholar 

  10. Femia N, Petrone G, Spagnuolo G, Vitelli M (2004) Optimizing duty-cycle perturbation of P&O MPPT technique,” In Proceedings of the 35th IEEE Annual Power Electronics Specialists Conference (PESC ‘04), pp. 1939–1944

  11. Zhi-rong Xu, Yang P, Zhou D-B, Li P, Lei J-Y, Chen Y-R (2015) An improved variable step size MPPT algorithm based on INC. J Power Electron 15(2):487–496

    Article  Google Scholar 

  12. Tey KS, Mekhilef S (2014) Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast changing solar irradiation level. Sol Energy 101:333–342

    Article  Google Scholar 

  13. Ahmed J, Salam Z (2016) A modified P&O maximum power point tracking method with reduced steady-state oscillation and improved tracking efficiency. IEEE Trans Sustain Energy 7(4):1506–1515

    Article  Google Scholar 

  14. Tey KS, Mekhilef S (2014) Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans Industr Electron 61(10):5384–5392

    Article  Google Scholar 

  15. Soon TK, Mekhilef S (2015) A fast-converging MPPT technique for photovoltaic system under fast-varying solar irradiation and load resistance. IEEE Trans Industr Inf 11(1):176–186

    Article  Google Scholar 

  16. Xu L, Cheng R, Yang J A new MPPT technique for fast and efficient tracking under fast varying solar irradiation and load resistance, Hindawi International Journal of Photoenergy, 2020, Article ID 6535372, p 18, https://doi.org/10.1155/2020/6535372.

  17. Kwan TH, Wu X (2016) Maximum power point tracking using a variable antecedent fuzzy logic controller. SE Sol Energy 137:189–200

    Article  Google Scholar 

  18. Bouselham L, Hajji M, Hajji B, Bouali H (2017) A new MPPT-based ANN for photovoltaic system under partial shading conditions. Energy Procedia 111:924–933

    Article  Google Scholar 

  19. Tchouani Njomo AF, Sonfack LL, Douanla RM, Kenne G (2021) Nonlinear neuro-adaptive control for MPPT applied to photovoltaic systems. Springer, Journal of Control, Automation and Electrical Systems. https://doi.org/10.1007/s40313-021-00691-3

  20. De Oliveira FM, Oliveira da Silva SA, Durand FR, Sampaio LP, Bacon VD, Campanhol LB (2016) Grid-tied photovoltaic system based on PSO MPPT technique with active power line conditioning. IET Power Electron 9:1180–1191

    Article  Google Scholar 

  21. Larbes C, Aït Cheikh SM, Obeidi T, Zerguerras A (2009) Genetic algorithms optimized fuzzy logic control for the maximum power point tracking in photovoltaic system. Renew Energy 34:2093–2100

    Article  Google Scholar 

  22. Check T (2018) A novel maximum power point tracking algorithm for a standalone solar photovoltaic system. Electronics 7:327

    Article  Google Scholar 

  23. Ram JP, Babu TS, Rajasekar N (2017) A comprehensive review on solar PV maximum power point tracking techniques. Renew Sustain Energy Rev 67:826–847

    Article  Google Scholar 

  24. Dincmen E, Guvenc BA, Acarman T (2014) Extremum-seeking control of ABS braking in road vehicles with lateral force improvement. IEEE Trans Control Syst Technol 22(1):230–237

    Article  Google Scholar 

  25. Zhang Y, Gans N (2013) Extremum seeking control of a nonholonomic mobile robot with limited field of view, In American Control Conference (ACC13), pp. 2765–2771

  26. Hellstrom E, Lee D, Jiang L, Stefanopoulou A, Yilmaz H (2013) On-board calibration of spark timing by extremum seeking for flex-fuel engines. IEEE Trans Control Syst Technol 21(6):2273–2279

    Article  Google Scholar 

  27. Krstic M (2000) Performance improvement and limitations in extremum seeking control. Syst Control Lett 39(5):313–326

    Article  MATH  Google Scholar 

  28. Li X, Li Y, Seem JE, Lei P (2016) Detection of internal resistance change for photovoltaic arrays using extremum-seeking control MPPT signals. IEEE Trans Control Syst Technol 24(1):325–333

    Article  Google Scholar 

  29. Yau H-T, Wu C-H (2011) Comparison of extremum-seeking control techniques for maximum power point tracking in photovoltaic systems, Energies, ISSN 1996–1073, 4: 2180–2195 doi:https://doi.org/10.3390/en4122180

  30. Twaha S, Zhu J, Maraaba L, Huang K, Li B, Yan Y (2017) Maximum power point tracking control of a thermoelectric generation system using the extremum seeking control method. Energies 2017 MDPI. https://doi.org/10.3390/en10122016

    Article  Google Scholar 

  31. Mohammad ANM, Radzi MAM, Azis N, Shafie S, Mohd Zainuri MAA (2020) A novel hybrid approach for maximizing the extracted photovoltaic power under complex partial shading conditions. Sustainability 12:5786. https://doi.org/10.3390/su12145786

    Article  Google Scholar 

  32. Leyva R, Alonso C, Queinnec I, Cid-Pastor A, Lagrange D, Martinez-Salamero L (2006) MPPT of photovoltaic systems using extremum-seeking control. IEEE Trans Aerosp Electron Syst 42(1):249–258

    Article  Google Scholar 

  33. Leyva R, Olalla C, Zazo H et al (2012) MPPT Based on sinusoidal extremum-seeking control in PV generation. Int J Photoenergy 2012:7

    Article  Google Scholar 

  34. Li X, Li Y, Seem. JE, Lei P (2011) Maximum power point tracking for photovoltaic systems using adaptive extremum seeking control. In Dynamic Systems and Control Conference (Vol. 54754, pp. 803–810)

  35. Kebir A, Woodward L, Akhrif O (2017) Extremum-seeking control with adaptive excitation: application to a photovoltaic system. IEEE Trans Industr Electron 65(3):2507–2517

    Article  Google Scholar 

  36. Bizon N (2016) Global extremum seeking control of the power generated by a photovoltaic array under partially shaded conditions. Energy Convers Manage 109:71–85

    Article  Google Scholar 

  37. Tchouani Njomo AF, Kenne G, Douanla RM, Sonfack LL (2020) A modified ESC algorithm for MPPT applied to a photovoltaic system under varying environmental conditions. Hindawi, Int J Photoenergy, https://doi.org/10.1155/2020/1956410.

  38. Moshksar E, Ghanbari T, Samet H, Guay M (2018) Estimation-based extremum-seeking control: a real-time approach for improving energy efficiency in photovoltaic systems, IEEE Syst J

  39. Rashid MH (2001) Power Electronics, Academic Press Series in Engineering

  40. Erickson RW, Maksimovic D (2007) Fundamentals of Power Electronics. Springer Science & Business Media, Berlin

    Google Scholar 

  41. Tan Y, Moase W, Manzie C, Nesic D, Mareels IMY (2010) Extremum Seeking from 1922 to 2010, In 29th Chinese Control Conference (CCC10), pp. 14–26

  42. Malek H, Dadras S, Chen Y (2016) Performance analysis of fractional order extremum seeking control. ISA Trans 63:281–287

    Article  Google Scholar 

  43. Guay M, Dochain D (2015) A time-varying extremum-seeking control approach. Automatica 51:356–363

    Article  MATH  Google Scholar 

  44. Petit N, Rouchon P (2013) Automatique: Dynamique et contrôle des systèmes, In Notes de cours, École d’Ingénieur, pp. 178–179, MINES Paris Tech

  45. Khalil HK (1996) Nonlinear systems, 2nd edn. Prentice-Hall, Upper Saddle River, N.J.

    Google Scholar 

  46. DeCarlo RA, Branicky MS, Pettersson S, Lennartson B (2000) Perspectives and results on the stability and stabilizability of hybrid systems. Proc IEEE 88:1069–1082

    Article  Google Scholar 

  47. Shorten R, Narendra K (1998) On the stability and existence of common Lyapunov functions for stable linear switching systems, In Decision and Control, 1998. Proceedings of the 37th IEEE Conference on, pp. 3723–3724

  48. Marinkov S, de Jager B, Steinbuch M (2014) Extremum seeking control with data-based disturbance feedforward. Am Control Conf (ACC) 2014:3627–3632

    Google Scholar 

  49. Overall efficiency of grid connected photovoltaic inverters (2010) EN 50530

  50. EL Aamri F, Maker H, Sera D, Spataru S, Guerrero JM, Mouhsen A (2018) A direct maximum power point tracking method for single-phase grid-connected PV inverters. IEEE Trans Power Electr 33(10):8961–8971. https://doi.org/10.1109/TPEL.2017.278

    Article  Google Scholar 

Download references

Funding

Nothing to report

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Dzonde Naoussi.

Ethics declarations

Conflict of interest

Nothing to report

Availability of data and materials

Nothing to report

Code availability

Nothing to report

Authors contribution

S. Kenfack Tsobze: modelling and simulations; A. Tchouani: Experimental setup support; S. R. Dzonde Naoussi : Implementation of different orientations; G. Kenne: choice of objectives and journal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsobze, S.K., Njomo, A.F.T., Naoussi, S.R.D. et al. A new modified ESC algorithm for MPPT applied to a photovoltaic system for power losses mitigation under varying environmental conditions. Int. J. Dynam. Control 11, 354–369 (2023). https://doi.org/10.1007/s40435-022-00976-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-022-00976-8

Keywords

Navigation