Skip to main content
Log in

Ergodic stationary distribution and disease eradication in a stochastic SIR model with telegraph noises and Lévy jumps

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this work, we present analysis of a SIR model where white noises, telegraph noises (Markov switching) and Lévy jumps serve as sources of environmental perturbations in the system. Based on the Feller property, we derive sufficient conditions for the existence of a unique stationary distribution with ergodic property using the mutually exclusive probabilities technique (Stenner in the existence and uniqueness of invariant measure for continuous-time Markov process, Tech. Report, pp 18-86, Brown University, Providence, RI, USA, 1986). Further, in a special case, we derived condition for disease eradication. Using numerical simulations, we were able to illustrate the analytical results obtained herein. Some of the results reveal that, in a Markovian switching regime, white noises and Lévy jumps could determine whether the disease is eradicated or not, with both sources of random perturbations affecting the degree of disease persistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and material

No specific data or unique material was used for this work.

References

  1. Lou Y, Zhao X-Q (2010) A climate-based malaria transmission model with structured vector population. J SIAM Appl Math 70:2023–2044

    Article  MathSciNet  MATH  Google Scholar 

  2. Omame A, Okuonghae D, Umana RA, Inyama SC (2020) Analysis of a co-infection model for HPV-TB. Appl Math Model 77:881–901

    Article  MathSciNet  MATH  Google Scholar 

  3. Omame A, Umana RA, Okuonghae D, Inyama SC (2018) Mathematical analysis of a two-sex human papillomavirus (HPV) model. Int J Biomath 11(7):1850092

    Article  MathSciNet  MATH  Google Scholar 

  4. Kermack WO, McKendrick AG (1927) Contributions to the mathematical theory of epidemics, part 1. Proc R Soc Lond Ser A 115:700–721

    Article  MATH  Google Scholar 

  5. Khan T, Khan A, Zaman G (2018) The extinction and persistence of the stochastic Hepatitis B epidemic model. Chaos Solitons Fractals 108(8):123–128

    Article  MathSciNet  MATH  Google Scholar 

  6. van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu Q, Jiang D (2019) The dynamics of a stochastic vaccinated tuberculosis model with treatment. Phys A 527:121274

    Article  MathSciNet  MATH  Google Scholar 

  8. Ge J, Zuo W, Jiang D (2022) Stationary distribution and density function analysis of a stochastic epidemic HBV model. Math Comput Simul 191:232–255

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu Q, Jiang D, Hayat T, Alsaedi A (2018) Dynamics of a stochastic tuberculosis model with antibiotic resistance. Chaos Solitons Fractals 109:223–230

    Article  MathSciNet  MATH  Google Scholar 

  10. Miao A, Zhang J, Zhang T, Pradeep BGSA (2017) Threshold dynamics of a stochastic SIR model with vertical transmission and vaccination. Comput Math Methods Med 4820183. https://doi.org/10.1155/2017/4820183

  11. Okuonghae D (2021) Analysis of a stochastic mathematical model for tuberculosis with case detection. Int J Dyn Control. https://doi.org/10.1007/s40435-021-00863-8

    Article  Google Scholar 

  12. Zhao Y, Jiang D (2014) The threshold of a stochastic SIS epidemic model with vaccination. Appl Math Comput 243:718–727

    MathSciNet  MATH  Google Scholar 

  13. Kiouach D, Sabbar Y (2020) Ergodic stationary distribution of a stochastic Hepatitis B epidemic model with interval-valued parameters and compensated Poisson process. Comput Math Models Med. https://doi.org/10.1155/2020/9676501

    Article  MATH  Google Scholar 

  14. Zhou Y, Zhang W (2016) Threshold of a stochastic SIR epidemic model with Lévy jumps. Phys A 446:204–216

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang X, Wang K (2013) Stochastic SIR model with jumps. Appl Math Lett 26:867–874

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu M, Zhu Y (2018) Stationary distribution and ergodicity of a stochastic hybrid competition model with Lévy jumps. Nonlinear Anal Hybrid Syst 30:225–239

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu J, Liu M (2017) Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps. Phys A 482:14–28

    Article  MathSciNet  MATH  Google Scholar 

  18. Cao Z, Liu X, Wen X, Liu L, Zu L (2019) A regime-switching SIR epidemic model with a ratio-dependent incidence rate and degenerate diffusion. Sci Rep 9:10696

    Article  Google Scholar 

  19. Settati A, Lahrouz A (2014) Stationary distribution of stochastic population systems under regime switching. Appl Math Comput 244:235–243

    MathSciNet  MATH  Google Scholar 

  20. Zhou Y, Zuo W, Jiang D, Song M (2020) Stationary distribution and extinction of a stochastic model of syphilis transmission in an MSM population with telegraph noises. J Appl Math Comput. https://doi.org/10.1007/s12190-020-01453-1

    Article  MATH  Google Scholar 

  21. Stenner L (1986) On the existence and uniqueness of invariant measure for continuous-time markov process, Tech. Report, pp 18–86, Brown University, Providence, RI, USA

  22. Zhao D, Yuan S (2018) Sharp conditions for the existence of a stationary distribution in one classical stochastic chemostat. Appl Math Comput 339:199–205

    MathSciNet  MATH  Google Scholar 

  23. Khasminskii R (1980) Stochastic stability of differential equations. Sijthoff and Noordhoff, The Netherlands

    Book  MATH  Google Scholar 

  24. Mao X (1997) Stochastic differential equations and applications. Horwood Publishing, Chichester

    MATH  Google Scholar 

  25. Sene N (2020) Analysis of the stochastic model for predicting the novel coronavirus disease. Adv Differ Equ. https://doi.org/10.1186/s13662-020-03025-w

    Article  MathSciNet  MATH  Google Scholar 

  26. Meyn SP, Tweedie RI (1993) Stability of markovian processes III: Foster–Lyapunov criteria for continuous-time process. Adv Appl Probab 25:518–548

    Article  MathSciNet  MATH  Google Scholar 

  27. Tong J, Zhang Z, Bao J (2013) The stationary distribution of the facultative population model with a degenerate noise. Statist Probab Lett 83:655–664

    Article  MathSciNet  MATH  Google Scholar 

  28. Higham DJ (2001) An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev 43(1):525–546

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for their insightful comments which have improved the quality of this work.

Funding

This work was carried out without any funding.

Author information

Authors and Affiliations

Authors

Contributions

The work was 100% carried out by the author.

Corresponding author

Correspondence to D. Okuonghae.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest regarding the publication of this paper.

Code availability

The codes used for the simulations in this work may be made available on request.

Appendices

Appendix A: Proof to Lemma 2.1

Proof

Let \(\phi (t)\) be the solution of

$$\begin{aligned} \begin{aligned} \mathrm{d}\phi (t)&= - [\mu (k) + \alpha (k)]\phi \mathrm{d}t + \sigma _1(k) \phi \mathrm{d}B_1(t)\\&\quad + \int \limits _Z G_1(z)\phi (t-){\tilde{N}}(\mathrm{d}t,\mathrm{d}z), \end{aligned} \end{aligned}$$
(5.1)

with \(\phi (0) = 1\). Using the generalized Itô’s formula to \(\ln \phi (t)\) and taking integrations, we have that

$$\begin{aligned} \begin{aligned} \phi (t)&= \exp \bigg [\int _0^t-\bigg (\bigg [\mu (k) + \alpha (k)\\&\quad +\frac{\sigma _1^2(k)}{2}\bigg ] + \int \limits _Z \big \{\ln [1+G_1(z)]-G_1(z)\big \}\nu (\mathrm{d}z)\bigg )\mathrm{d}s\\&\quad + \sigma _1(k)B_1(t) + \int _0^t \int \limits _Z \ln [1+G_1(z)]{\tilde{N}}(\mathrm{d}t,\mathrm{d}z)\bigg ]. \end{aligned} \end{aligned}$$

Applying the variation-of-constants formula, we have that \(\theta (t) = \theta (0)f(t)+\Lambda (k)f(t)\int _0^t f^{-1}(s)\mathrm{d}s\), where

$$\begin{aligned} \begin{aligned} f(t)&= \exp \bigg (-\bigg (\bigg [\mu (k) + \alpha (k)+\frac{\sigma _1^2(k)}{2}\bigg ]t + \sigma _1(k)B_1(t)\bigg )\\&\quad \times \exp \bigg [\int _0^t \int \limits _Z \big \{\ln (1+G_1(z))-G_1(z)\big \}\nu (\mathrm{d}z)\mathrm{d}s\\&\quad + \int _0^t \int \limits _Z \ln [1+G_1(z)]{\tilde{N}}(\mathrm{d}s,\mathrm{d}z)\bigg ]. \end{aligned} \end{aligned}$$

Then,

$$\begin{aligned} \theta (t) \le \theta (0){\bar{f}}(t)+{\check{\Lambda }}{\bar{f}}(t)\int _0^t {\bar{f}}^{-1}(s)\mathrm{d}s, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned}&{\bar{f}}(t) = e^{\check{\sigma _1}B_1(t)} \times \exp \bigg [\int _0^t \int \limits _Z \big \{\ln [1+G_1(z)]-G_1(z)\big \}\nu (dz)ds\\&\quad + \int _0^t \int \limits _Z \ln [1+G_1(z)]{\tilde{N}}(\mathrm{d}t,\mathrm{d}z)\bigg ]. \end{aligned} \end{aligned}$$

Since, based on the results in [14], we have that

$$\begin{aligned}&\lim _{t\rightarrow \infty } \frac{\int _0^t \int \limits _Z \big \{\ln (1+G_1(z))-G_1(z)\big \}\nu (\mathrm{d}z)\mathrm{d}s + \int _0^t \int \limits _Z \ln (1+G_1(z)){\tilde{N}}(\mathrm{d}s,\mathrm{d}z)}{t} = 0\quad \text {a.s.}, \end{aligned}$$

it is easy to get the desired result that

$$\begin{aligned} \lim _{t\rightarrow \infty } \frac{\ln \theta (t)}{t} = 0 \quad \text {a.s.} \square \end{aligned}$$

Appendix B: Proof to Lemma 2.2

Proof

Applying Itô’s formula to the addition of the first two equations in (1.2), we have that

$$\begin{aligned} \begin{aligned}&d[S(t)+I(t)] = [\Lambda (k)-\alpha (k)S(t)-\mu (k)(S(t)\\&\qquad +I(t))-(\gamma (k) + \delta (k))I(t)]\mathrm{d}t+ \sigma _1(k)S(t)\mathrm{d}B_1(t)\\&\qquad + \sigma _2(k)I(t)\mathrm{d}B_2(t) + \int \limits _Z (G_1(z)S(t-)\\&\qquad +G_2(z)I(t-)){\tilde{N}}(\mathrm{d}t,\mathrm{d}z)\\&\quad \le [{\check{\Lambda }}-{\hat{\mu }}(S(t)+I(t))]\mathrm{d}t\\&\qquad + \sigma _1(k)S(t)\mathrm{d}B_1(t)+\sigma _2(k)I(t)\mathrm{d}B_2(t)\\&\qquad + \int \limits _Z \max \{G_1(z),G_2(z)\}[S(t-)+I(t-)]{\tilde{N}}(\mathrm{d}t,\mathrm{d}z). \end{aligned} \end{aligned}$$

Now,

$$\begin{aligned} \begin{aligned}&\mathrm{d}[S(t)+I(t)]e^{\mu (k)t} = \mu (k)[S(t)+I(t)]e^{\mu (k)t}\mathrm{d}t\\&\qquad + e^{\mu (k)t}\mathrm{d}[S(t)+I(t)]\\&\quad \le {\check{\Lambda }}e^{{\check{\mu }}t}\mathrm{d}t + e^{{\check{\mu }}t}[\check{\sigma _1}S(t)\mathrm{d}B_1(t)+\check{\sigma _2}I(t)\mathrm{d}B_2(t)]\\&\qquad + e^{{\check{\mu }}t}\int \limits _Z \max \{G_1(z),G_2(z)\}[S(t-)+I(t-)]{\tilde{N}}(\mathrm{d}t,\mathrm{d}z). \end{aligned}\nonumber \\ \end{aligned}$$
(5.2)

Integrating (5.2), we have that

$$\begin{aligned} \begin{aligned}&S(t)+I(t) \le [S(0)+I(0)]e^{-{\hat{\mu }}t} + {\check{\Lambda }}\int _0^t e^{-{\hat{\mu }}(t-s)}\mathrm{d}s\\&\qquad + \int _0^t e^{-{\hat{\mu }}(t-s)}[\check{\sigma _1}S(s)\mathrm{d}B_1(s)+\check{\sigma _2}I(s)\mathrm{d}B_2(s)]\mathrm{d}s\\&\qquad + \int _0^t e^{-{\hat{\mu }}(t-s)}\int \limits _Z \max \{G_1(z),G_2(z)\}[S(s-)\\&\qquad +I(s-)]{\tilde{N}}(\mathrm{d}s,\mathrm{d}z)\mathrm{d}s. \end{aligned} \end{aligned}$$

Taking expectations, we have that

$$\begin{aligned} \begin{aligned}&{\mathbb {E}}[S(t)+I(t)]\le [S(0)+I(0)]e^{-{\hat{\mu }}t} + {\check{\Lambda }}\int _0^t e^{-{\hat{\mu }}(t-s)}\mathrm{d}s\\&\quad \le [S(0)+I(0)]e^{-{\hat{\mu }}t} + \frac{{\check{\Lambda }}}{{\hat{\mu }}}. \end{aligned} \end{aligned}$$

Now, we have that

$$\begin{aligned} \begin{aligned}&\lim _{t\rightarrow \infty }\sup \frac{1}{t}\int _0^t {\mathbb {E}}[S(s)+I(s)]\mathrm{d}s\\&\quad \le [S(0)+I(0)]\lim _{t\rightarrow \infty }\sup \frac{1}{t}\int _0^t e^{-{\hat{\mu }}s} ds + \frac{{\check{\Lambda }}}{{\hat{\mu }}} \\&\quad \le \frac{{\check{\Lambda }}}{{\hat{\mu }}}. \end{aligned} \end{aligned}$$

\(\square \) .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okuonghae, D. Ergodic stationary distribution and disease eradication in a stochastic SIR model with telegraph noises and Lévy jumps. Int. J. Dynam. Control 10, 1778–1793 (2022). https://doi.org/10.1007/s40435-022-00962-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-022-00962-0

Keywords

Navigation