Skip to main content

Advertisement

Log in

Comparative application of the self-adaptive fuzzy-PI controller for a wind energy conversion system connected to the power grid and based on DFIG

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This paper presents a fuzzy logic self-adaptive approach using vector control or proportional integral (FLSA-VC or PI), for a grid-connected wind energy conversion system (WECS) based on a doubly fed induction generator (DFIG). Mainly, the objective of this paper is to explore the relative efficiency of fuzzy logic when intelligently optimizing the parameters of a PI controller, which contributes to achieving better performance in controlling wind turbines, as well as to improve the integration of controllers in laboratory and/or field contexts. Therefore, a very efficient approach is proposed to better evaluate the performance of controllers based on the influences of model uncertainties, parameters and random wind behavior. Comparative analyses between PI, FLC and FLSA-PI controllers are carried out. Simulation results on MATLAB/SIMULINK show that the PI is the less efficient of the other two controllers. However, the FLC is appreciated than the FLSA-PI in terms of disturbance rejection, decoupling between active and reactive power, fast tracking of reference quantities without any overshoot and a power factor almost equal to the unit. Whereas the proposed FLSA-PI is better than the FLC in terms of reducing static errors and signal fluctuations that can lead to undesirable mechanical and frequency stresses on the turbine and the currents injected into the grid, respectively. A short time is observed for the balanced currents to reach the regime established on the network, with a low rate of total harmonic distortion (THD). Therefore, the FLSA associated with an advanced type controller could still hold great promise in WECS control, due to the performance already proven by the FLSA in the optimization of PI parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. Hab R (2019) Energies renouvelables en afrique: Enjeux, défis et opportunités/renewable energies in Africa: issues, challenges and opportunities

  2. Rani MA, Nagamani C, Ilango GS (2016) A versatile method for computation of power pulsations in DFIG under grid imperfections. Renew Energy 88:143–153. https://doi.org/10.1016/j.renene.2015.11.028

    Article  Google Scholar 

  3. Robyns B, Davigny A, Saudemont C, Ansel A, Courtecuisse V, François B, Deuse J (2006) Impact de l’éolien sur le réseau de transport et la qualité de l’énergie. J3eA 5:003

    Article  Google Scholar 

  4. Giannakis A, Karlis A, Karnavas YL (2018) A combined control strategy of a DFIG based on a sensor less power control through modified phase-locked loop and fuzzy logic controllers. Renew Energy 121:489–501. https://doi.org/10.1016/j.renene.2018.01.052

    Article  Google Scholar 

  5. Wadawa B, Errami Y, Obbadi A, Sahnoun S, and Aoutoul M (2019) Control of wind energy conversion system connected to the power grid and based on double fed induction generator. In: Proceedings of the 4th international conference on big data and internet of things, pp 1–8. https://doi.org/10.1145/3372938.3373004

  6. Merabet H, Bahi T, Bedoud K et al (2017) Eccentricity fault diagnosis based on wavelet transform and neuro-fuzzy inference system in doubly-fed induction generator. In: Congrès international sur les energies renouvelables et le développement durable

  7. Kong S, Majumder R (2008) H∞ robust control design for wind driven doubly-fed induction generator. In: 2008 IEEE power and energy society general meeting-conversion and delivery of electrical energy in the 21st century. IEEE, pp 1–6. https://doi.org/10.1109/pes.2008.4596636

  8. Lhachimi H, Sayouti Y, El Kouari Y (2018) Optimal improvement of direct power control strategy based on sliding mode controllers. Comput Electr Eng 71:637–656. https://doi.org/10.1016/j.compeleceng.2018.08.013

    Article  Google Scholar 

  9. Xiong L, Li P, Wu F, Ma M, Khan MW, Wang J (2019) A coordinated high-order sliding mode control of DFIG wind turbine for power optimization and grid synchronization. Int J Electr Power Energy Syst 105:679–689. https://doi.org/10.1016/j.ijepes.2018.09.008

    Article  Google Scholar 

  10. Yang B, Yu T, Shu H, Dong J, Jiang L (2018) Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers. Appl Energy 210:711–723. https://doi.org/10.1016/j.apenergy.2017.08.027

    Article  Google Scholar 

  11. Bossoufi B, Karim M, Lagrioui A, Taoussi M, Derouich A (2015) Observer backstepping control of DFIG-generators for wind turbines variable-speed: FPGA-based implementation. Renew Energy 81:903–917. https://doi.org/10.1016/j.renene.2015.04.013

    Article  Google Scholar 

  12. Islam KS, Seyedmahmoudian M, Stojcevski A (2019) Decentralized robust mixed H2/H∞ reactive power control of DFIG cluster using SMES. Int J Electr Power Energy Syst 113:176–187. https://doi.org/10.1016/j.ijepes.2019.05.017

    Article  Google Scholar 

  13. Tang Y, Ju P, He H, Qin C, Wu F (2013) Optimized control of DFIG-based wind generation using sensitivity analysis and particle swarm optimization. IEEE Trans Smart Grid 4(1):509–520. https://doi.org/10.1109/tsg.2013.2237795

    Article  Google Scholar 

  14. Ardjoun SAEM, Denai M, Abid M (2019) Robustification du contrôle des éoliennes pour une meilleure intégration dans un réseau déséquilibré. In: 2019 Algerian large electrical network conference (CAGRE). IEEE, pp 1–6. https://doi.org/10.1109/cagre.2019.8713286

  15. Dzung PQ, Bao AN, Lee HH (2011) New artificial neural network based direct virtual torque control and direct power control for DFIG in wind energy systems. In: 2011 IEEE ninth international conference on power electronics and drive systems. IEEE, pp 219–227. https://doi.org/10.1109/peds.2011.6147250

  16. Yu C, Li D (2012) Fuzzy-PI and feedforward control strategy of DFIG wind turbine. In: IEEE PES innovative smart grid technologies. IEEE, pp 1–5. https://doi.org/10.1109/isgt-asia.2012.6303299

  17. Hamane B, Benghanemm M, Bouzid AM, Belabbes A, Bouhamida M, Draou A (2012) Control for variable speed wind turbine driving a doubly fed induction generator using Fuzzy-PI control. Energy Procedia 18:476–485. https://doi.org/10.1016/j.egypro.2012.05.059

    Article  Google Scholar 

  18. Bounar N, Labdai S, Boulkroune A (2019) PSO–GSA based fuzzy sliding mode controller for DFIG-based wind turbine. ISA Trans 85:177–188. https://doi.org/10.1016/j.isatra.2018.10.020

    Article  Google Scholar 

  19. Shukla RD, Tripathi RK, Thakur P (2017) DC grid/bus tied DFIG based wind energy system. Renew Energy 108:179–193. https://doi.org/10.1016/j.renene.2017.02.064

    Article  Google Scholar 

  20. Debouza M, Al-Durra A, Errouissi R, Muyeen SM (2018) Direct power control for grid-connected doubly fed induction generator using disturbance observer based control. Renew Energy 125:365–372. https://doi.org/10.1016/j.renene.2018.02.121

    Article  Google Scholar 

  21. Raju SK, Pillai GN (2016) Design and real time implementation of type-2 fuzzy vector control for DFIG based wind generators. Renew Energy 88:40–50. https://doi.org/10.1016/j.renene.2015.11.006

    Article  Google Scholar 

  22. Rocha-Osorio CM, Solís-Chaves JS, Rodrigues LL, Puma JA, Sguarezi Filho AJ (2019) Deadbeat–fuzzy controller for the power control of a doubly fed induction generator based wind power system. ISA Trans 88:258–267. https://doi.org/10.1016/j.isatra.2018.11.038

    Article  Google Scholar 

  23. Åström KJ, Hägglund T (1995) PID controllers: theory, design, and tuning, vol 2. Instrument society of America, Research Triangle Park

    Google Scholar 

  24. Slootweg JG, Polinder H, Kling WL (2001) Initialization of wind turbine models in power system dynamics simulations. In: 2001 IEEE Porto power tech proceedings (Cat.No.01EX502), vol 4. IEEE, pp 6. https://doi.org/10.1109/PTC.2001.964827

  25. Matía F, Marichal GN, Jiménez E (eds) (2014) Fuzzy modeling and control: theory and applications. Atlantis Press, Amsterdam. https://doi.org/10.2991/978-94-6239-082-9

    Book  MATH  Google Scholar 

  26. Xu Q, Kan J, Chen S, Yan S (2014) Fuzzy PID based trajectory tracking control of mobile robot and its simulation in simulink. Int J Control Autom 7(8):233–244. https://doi.org/10.14257/ijca.2014.7.8.20

    Article  Google Scholar 

  27. Zongshuai L, Sibo Z (2018) Designing a self-adaptive fuzzy PID controller for aircraft cabin temperature. J Syst Simul 30(11):4395. https://doi.org/10.16182/j.issn1004731x.joss.201811041

    Article  Google Scholar 

  28. Shihabudheen KV, Pillai GN, Krishnama Raju S (2019) Neuro-fuzzy control of DFIG wind energy system with distribution network. Electr Power Compon Syst. https://doi.org/10.1080/15325008.2018.1499154

    Article  Google Scholar 

  29. Yu C, Li D (2012) Fuzzy-PI and feedforward control strategy of DFIG wind turbine. In: IEEE PES innovative smart grid technologies. IEEE, p 5. https://doi.org/10.1109/isgt-asia.2012.6303299

  30. Chen X, Wang L, Sun H, Chen Y (2017) Fuzzy logic based adaptive droop control in multiterminal HVDC for wind power integration. IEEE Trans Energy Convers 32(3):1200–1208. https://doi.org/10.1109/tec.2017

    Article  Google Scholar 

  31. Khemis A, Chafaa K, Menacer A (2011) Application de la logique floue type-1 à la commande adaptative de la machine asynchrone

  32. Xie X, Long Z (2015) Fuzzy PID temperature control system design based on single chip microcomputer. Int J Online Eng iJOE 11(8):29–33. https://doi.org/10.3991/ijoe.v11i8.4881

    Article  Google Scholar 

  33. Baghli FZ, El Bakkali L (2016) Design and simulation of robot manipulator position control system based on adaptive fuzzy PID controller. In: Robotics and mechatronics. Springer, Cham, pp 243–250. https://doi.org/10.1007/978-3-319-22368-1_24

  34. Chedid RB, Karaki SH, El-Chamali C (2000) Adaptive fuzzy control for wind-diesel weak power systems. IEEE Trans Energy Convers 15(1):71–78. https://doi.org/10.1109/60.849119

    Article  Google Scholar 

  35. Mokhtari M, Khazaei J, Nazarpour D (2013) Sub-synchronous resonance damping via doubly fed induction generator. Int J Electr Power Energy Syst 53:876–883. https://doi.org/10.1016/j.ijepes.2013.05.054

    Article  Google Scholar 

  36. Tamaarat A, Benakcha A (2014) Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connected variable speed wind energy conversion system. Front Energy 8(3):371–378. https://doi.org/10.1007/s11708-014-0318-6

    Article  Google Scholar 

  37. Rechka S, Roy G, Dennetiere S et al (2004). Modeling of multi-mass electromechanical systems based on asynchronous machines, using MATLAB and EMTP tools with application to wind turbines. https://publications.polymtl.ca/2616/.

  38. Belfedal C, Gherbi S, Sedraoui M, Moreau S, Champenois G, Allaoui T, Denaï MA (2010) Robust control of doubly fed induction generator for stand-alone applications. Electr Power Syst Res 80(2):230–239. https://doi.org/10.1016/j.epsr.2009.09.002

    Article  Google Scholar 

  39. Jday M, Haggège J (2017) Modeling and neural networks based control of power converters associated with a wind turbine. In: 2017 International conference on green energy conversion systems (GECS). IEEE, p 1–7. https://doi.org/10.1109/gecs.2017.8066248

  40. Bedoud K, Ali-Rachedi M, Lakel R et al (2014) Modeling and control of the wind energy conversion systems based on DFIG under sub-and super-synchronous operation modes. In: Proceedings of engineering and technology (PET), vol 9, no 2015

  41. Sánchez-Solano S, Brox M (2014) Hardware implementation of embedded fuzzy controllers on FPGAs and ASICs. In: Fuzzy modeling and control: theory and applications. Atlantis Press, Paris, pp 235–253. https://doi.org/10.2991/978-94-6239-082-9_13

  42. Haber R, Toro RM, del Godoy J, Gajate A (2014) Intelligent tuning of fuzzy controllers by learning and optimization. In: Fuzzy modeling and control: theory and applications, pp 135–158. https://doi.org/10.2991/978-94-6239-082-9_7

  43. Robyns B, Francois B, Degobert P, Hautier JP (2012) Vector control of induction machines. In: Vector control of induction machines. Springer, London, pp 75–121. https://doi.org/10.1007/978-0-85729-901-7

  44. Sharma J, Gupta MN, Nain MP (2015) Speed control of separately excited dc motor using fuzzy logic controller. Int J Tech Res IJTR. https://doi.org/10.1109/iecon.1998.724140

    Article  Google Scholar 

  45. Ta-Cao M, Le-Huy H (1998) Rotor resistance estimation using fuzzy logic for high performance induction motor drives. In: IECON'98. Proceedings of the 24th annual conference of the IEEE industrial electronics society (Cat. No. 98CH36200), vol 1. IEEE, pp 303–308. https://doi.org/10.1109/iecon.1998.724140

  46. Mugisha JC, Munyazikwiye B, Karimi HR (2015) Design of temperature control system using conventional PID and intelligent fuzzy logic controller. In: 2015 International conference on fuzzy theory and its applications (iFUZZY). IEEE, pp 50–55. https://doi.org/10.1109/iFUZZY.2015.7391893

  47. Zhou D, Blaabjerg F (2017) Bandwidth oriented proportional-integral controller design for back-to-back power converters in DFIG wind turbine system. IET Renew Power Gener 11(7):941–951

    Article  Google Scholar 

Download references

Funding

Equity and scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Boaz Wadawa, sections (Abstract, 1, 2, 3, 4, 5 and Reference); Youssef Errami, sections (Abstract, 1, 2, 5, Supervision and Proofreading); Abdellatif Obbadi, sections (1, 2, Supervision and Proofreading); Smail Sahnoun, sections (Proofreading and advice); Elmostafa Chetouani, sections (Collection of references for manuscript revision); Mohssin Aoutoul, sections (Proofreading and advice for the revision of the manuscript).

Corresponding author

Correspondence to Boaz Wadawa.

Ethics declarations

Conflict of interest

Nothing to report.

Availability of data and material

Nothing to report.

Code availability

Nothing to report.

Appendix

Appendix

See Figs. 35, 36, 37, 38 and Tables 4 and 5.

Fig. 35
figure 35

Mechanical speed control loop (Ωmec) for an MPPT

Fig. 36
figure 36

DFIG active (Ps) and reactive (Qs) power control loop

Fig. 37
figure 37

DC-BUS voltage (Udc) regulation loop

Fig. 38
figure 38

Active (ifd) and reactive (ifq) filter current control loop

Table 4 Summary of controller parameters PI, FLC and FLSA-PI
Table 5 Simulation parameters for DFIG, DC-bus, filter, turbine [47]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wadawa, B., Errami, Y., Obbadi, A. et al. Comparative application of the self-adaptive fuzzy-PI controller for a wind energy conversion system connected to the power grid and based on DFIG. Int. J. Dynam. Control 10, 2151–2173 (2022). https://doi.org/10.1007/s40435-022-00952-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-022-00952-2

Keywords

Navigation