Skip to main content

Advertisement

Log in

Modelling the effect of resource subsidy on a two-species predator-prey system under the influence of environmental noises

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Our ecosystem is full of various types of food chain systems. Most of the species have more than one food source with various kinds of possible interactions. In this work, we have studied a predator-prey-subsidy model in a rapidly fluctuating environment. As per our consideration predator exploits both a prey population and an allochthonous resource which is provided as a subsidy to the system exogenously, with Holling Type II response functions. Furthermore, we have introduced Gaussian white noise to the main parameters subject to coupling of a prey-predator pair with its environment. We have examined the existence of unique global positive solutions for both the deterministic and stochastic systems. Boundedness, uniform continuity, global attractiveness in mean of solutions of the stochastic system are proved. Conditions for extinction of prey and predator population are derived and the importance of environmental noise as well as subsidy for extinction is discussed through mathematical results and numerical findings. We have derived conditions for persistence of the proposed stochastic system. The results of persistence and extinction have been justified by numerical simulations. Numerically we have found that presence of subsidy can be the cause of survival of predator even there is no prey available for consumption which fact is different from the studies of those systems where additional food is provided for predator. We have also observed that very high input of subsidy can be a cause for extinction of prey population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams LG, Farley SD, Stricker CA, Demma DJ, Roffler GH, Miller DC, Rye RO (2010) Are inland wolf-ungulate systems influenced by marine subsidies of pacific salmon? Ecol Appl 20(1):251–262

    Article  Google Scholar 

  2. Baalen MV, Krivan V, Rijn PCJ, Sabelis MW (2001) Alternative food, switching predators, and the persistence of predator-prey systems. Am Nat 157:512–524

    Article  Google Scholar 

  3. Barbalat I (1959) Systems dequations differentielles doscillations nonlinearies. Rev Roum Math Pure Appl 4(2):267–270

    Google Scholar 

  4. Barnes VG Jr (1990) The influence of salmon availability on movements and range of brown bears on southwest kodiak island. Bears, pp 305–313

  5. Ben-David M, Bowyer R, Duffy L, Roby D, Schell D (1998) Social behavior and ecosystem processes: river otter latrines and nutrient dynamics of terrestrial vegetation. Ecology 79(7):2567–2571

    Article  Google Scholar 

  6. Bera SP, Maiti A, Samanta GP (2016) Stochastic analysis of a prey-predator model with herd behaviour of prey. Nonlinear Anal. Model. Control 21(3):345–361. https://doi.org/10.15388/NA.2016.3.4

  7. Chesson PL (1984) Variable predators and switching behavior. Theor Popul Biol 26:1–26

    Article  MathSciNet  MATH  Google Scholar 

  8. Comins HN, Hassell MP (1976) Predation in multi-prey communities. J Theor Biol 62:93–114

    Article  Google Scholar 

  9. Darimont CT, Paquet PC, Reimchen TE (2008) Spawning salmon disrupt trophic coupling between wolves and ungulate prey in coastal British Columbia. BMC Ecol 8(1):14

    Article  Google Scholar 

  10. Das Amartya, Samanta GP (2018) Stochastic prey-predator model with additional food for predator. Physica A 512:121–141. https://doi.org/10.1016/j.physa.2018.08.138

  11. Das Amartya, Samanta GP (2018) Modelling the fear effect on a stochastic prey-predator system with additional food for predator. J Phys A: Math Theor 51:465601. https://doi.org/10.1088/1751-8121/aae4c6

    Article  Google Scholar 

  12. Das Amartya, Samanta GP (2020) A prey-predator model with refuge for prey and additional food for predator in a fluctuating environment. Physica A 538:122844. https://doi.org/10.1016/j.physa.2019.122844

  13. Das Amartya, Samanta GP (2020) Modelling the fear effect in a twospecies predatorprey system under the influence of toxic substances, Rendiconti del Circolo Matematico di Palermo Series 2, https://doi.org/10.1007/s12215-020-00570-x

  14. Erbach A, Lutscher F, Seo G (2013) Bistability and limit cycles in generalist predator-prey dynamics. Ecol Complex 14:48–55

    Article  Google Scholar 

  15. Holling CS (1959) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can Entomol 91(5):293–320

    Article  Google Scholar 

  16. Jana D, Samanta GP (2014) Role of multiple delays in ratio-dependent prey-predator system with prey harvesting under stochastic environment. Neural Parallel Sci Comput 22:205–222

    MathSciNet  Google Scholar 

  17. Jana D, Banerjee A, Samanta GP (2017) Degree of prey refuges: control the competition among prey and foraging ability of predator. Chaos Solitons Fractals 104:350–362. https://doi.org/10.1016/j.chaos.2017.08.031

    Article  MathSciNet  MATH  Google Scholar 

  18. Ji C, Jiang D (2011) Dynamics of a stochastic density dependent predator-prey system with Beddington-DeAngelis functional response. J Math Anal Appl 381:441–453

    Article  MathSciNet  MATH  Google Scholar 

  19. Kimbrell T, Holt RD (2005) Individual behaviour, space and predator evolution promote persistence in a two-patch system with predator switching. Evol Ecol Res 7:53–71

    Google Scholar 

  20. Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927

    Article  Google Scholar 

  21. Maiti A, Samanta GP (2005) Deterministic and stochastic analysis of a prey-dependent predator-prey system. Int J Math Educ Sci Technol 36(1):65–83. https://doi.org/10.1080/00207390412331314980

    Article  MathSciNet  Google Scholar 

  22. Maiti A, Samanta GP (2006) Deterministic and stochastic analysis of a ratio-dependent prey-predator system. Int J Syst Sci 37(12):817–826. https://doi.org/10.1080/00207720600879252

    Article  MathSciNet  MATH  Google Scholar 

  23. Maiti A, Patra B, Samanta GP (2006) Sterile insect release method as a control measure of insect pests: a mathematical model. J Appl Math Comput 22(3):71–86

    Article  MathSciNet  MATH  Google Scholar 

  24. Maiti A, Jana MM, Samanta GP (2007) Deterministic and stochastic analysis of a ratio-dependent predator-prey system with delay. Nonlinear Anal Model Control 12(3):383–398

    Article  MathSciNet  MATH  Google Scholar 

  25. Maiti A, Sen P, Samanta GP (2016) Deterministic and stochastic analysis of a preypredator model with herd behaviour in both. Syst Sci Control Eng 4(1):259–269. https://doi.org/10.1080/21642583.2016.1241194

    Article  Google Scholar 

  26. Manna D, Maiti A, Samanta GP (2018) Deterministic and stochastic analysis of a predator-prey model with Allee effect and herd behaviour. Simulation. https://doi.org/10.1177/0037549718779445

  27. Mao X (2011) Stochastic differential equations and applications. Woodhead Publishing, Oxford

    Google Scholar 

  28. May RM (1973) Stability in randomly fluctuating deterministic environments. Am Nat 107:621–650

    Article  Google Scholar 

  29. Morozov A, Petrovskii S (2013) Feeding on multiple sources: towards a universal parameterization of the functional response of a generalist predator allowing for switching. PLoS ONE 8(9):e74586

    Article  Google Scholar 

  30. Murdoch WW (1969) Switching in general predators: experiments on predator specicity and stability of prey populations. Ecol Monogr 39:335–354

    Article  Google Scholar 

  31. Murdoch WW, Oaten A (1975) Predation and population stability. Adv Ecol Res 9:1–131

    Article  Google Scholar 

  32. Nevai AL, Van Gorder RA (2012) Effect of resource subsidies on predator-prey population dynamics: a mathematical model. J Biol Dyn 6(2):891–922

    Article  MATH  Google Scholar 

  33. Parshad RD, Bhowmick S, Quansah E, Basheer A, Upadhyay RK (2016) Predator interference effects on biological control: the paradox of the generalist predator revisited. Commun Nonlinear Sci Numer Simul 39:169–184

    Article  MathSciNet  MATH  Google Scholar 

  34. Rosenzweig ML, MacArthur RH (1963) Graphical representation and stability conditions of predator-prey interactions. Am Nat 97(895):209–223

    Article  Google Scholar 

  35. Roth JD (2002) Temporal variability in arctic fox diet as reflected in stable-carbon isotopes; the importance of sea ice. Oecologia 133:70–77

    Article  Google Scholar 

  36. Samanta GP (1990) Fluctuation and stability in a diffusive predator-prey system. Appl Math Lett 3(3):115–118

    Article  MATH  Google Scholar 

  37. Samanta GP (1991) Stochastic analysis of a noisy oscillator. Appl Math Lett 4(2):61–63

    Article  MathSciNet  MATH  Google Scholar 

  38. Samanta GP (1992) Complex stochastic averaging approach to a two-state predator system. Int J Math Educ Sci Technol 23(5):739–744. https://doi.org/10.1080/0020739920230513

  39. Samanta GP (1993) Logistic growth under colored noise, Bulletin Mathmatique De La Socit Des Sciences Mathmatiques De Roumanie 37(85):115–122. JSTOR, www.jstor.org/stable/43678527

  40. Samanta GP (1994) Stochastic analysis of a prey-predator system. Int j Math Educ Sci Technol 25(6):797–803. https://doi.org/10.1080/0020739940250603

    Article  MathSciNet  MATH  Google Scholar 

  41. Samanta GP (1996) The effects of random fluctuating environment on interacting species with time delay. Int J Math Educ Sci Technol 27(1):13–21. https://doi.org/10.1080/0020739960270102

    Article  MATH  Google Scholar 

  42. Samanta GP (1996) Influence of environmental noises on the Gomatam model of interacting species. Ecol Model 91(1–3):283–291

    Article  Google Scholar 

  43. Samanta GP (2010) A two-species competitive system under the influence of toxic substances. Appl Math Comput 216:291–299

    MathSciNet  MATH  Google Scholar 

  44. Samanta GP (2011) A stochastic two species competition model: Nonequilibrium fluctuation and stability. Int J Stoch Anal. https://doi.org/10.1155/2011/489386

    Article  MathSciNet  MATH  Google Scholar 

  45. Samanta GP, Bera SP (2018) Analysis of a Chlamydia epidemic model with pulse vaccination strategy in a random environment. Nonlinear Anal Model Control 23(4):457–474

    Article  MathSciNet  MATH  Google Scholar 

  46. Samanta GP, Chakrabarti CG (1989) Stochastically perturbed Hopf Bifurcation in an extended Volterra-Lotka system. Appl Math Lett 2(2):163–166

    Article  MathSciNet  MATH  Google Scholar 

  47. Samanta GP, Chakrabarti CG (1990) On stability and fluctuation in Gompertzian and logistic growth models. Appl Math Lett 3(3):119–121

    Article  MATH  Google Scholar 

  48. Samanta GP, Maiti A (2003) Stochastic gomatam model of interacting species: non-equilibrium fluctuation and stability. Syst Anal Model Simul 43:683–692

    Article  MathSciNet  MATH  Google Scholar 

  49. Samanta GP, Maiti A (2004) Dynamical model of a single-species system in a polluted environment. J Appl Math Comput 16(1–2):231–242

    Article  MathSciNet  MATH  Google Scholar 

  50. Samanta GP, Mondal A, Sahoo D, Dolai P (2020) A prey-predator system with herd behaviour of prey in a rapidly fluctuating environment. Math Appl Sci Eng 1(1):16–26

    Article  Google Scholar 

  51. Smout S, Asseburg C, Matthiopoulos J, Fernndez C, Redpath S, Thirgood S, Harwood J (2010) The functional response of a generalist predator. PLOS ONE 5(5):e10761

  52. Sunde P, Thorup K, Jacobsen LB, Rahbek C (2014) Weather conditions drive dynamic habitat selection in a generalist predator. PLOS ONE 9(2):e88221

  53. Willson MF (1993) Mammals as seed-dispersal mutualists in north america. Oikos 159–176

  54. Xu Y, Krause AL, Van Gorder RA (2020) Generalist predator dynamics under kolmogorov versus non-Kolmogorov models. J Theor Biol 486:110060

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees and Professor Jian-Qiao Sun (Editor-in-Chief) for their valuable comments and helpful suggestions, which have helped them to improve the presentation of this work significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amartya Das.

Appendices

Appendix A

Proof of Theorem 3.1

Since RHS of system (2.1) is continuous and locally Lipschitz on \(\mathbb {R}_{+}^{3}\), the solution (x(t), s(t), y(t)) of system (2.1) exists uniquely on \([0, \tau ]\), where \(\tau \in (0,\infty )\). Now from (2.1) with the initial conditions, we have from first equation:

$$\begin{aligned} x(t)= & {} x_0 \exp \int _{0}^{t} \left( g - \theta x(r) - \frac{\alpha y(r)}{x(r)+s(r)+h} \right) dr > 0, \\&\forall t\ge 0. \end{aligned}$$

From second equation of system (2.1), we have

$$\begin{aligned} \begin{aligned}&\frac{ds}{dt} + \left( d_{1} + \frac{\beta y}{x+s+h} \right) s = q \\&\quad \implies s(t) = \left( s_{0} + q \int _{0}^{t}e^{\int _{0}^{r}\left( d_{1} + \frac{\beta y}{x+s+h} \right) dr} dr \right) e^{-\int _{0}^{t}\left( d_{1} + \frac{\beta y}{x+s+h} \right) dr} \\&\quad > 0,\ \ \forall t\ge 0. \end{aligned} \end{aligned}$$

From third equation of system (2.1), we have

$$\begin{aligned} y(t) = y_0 \exp \int _{0}^{t} \left( \frac{\epsilon \alpha x + \eta \beta s}{x+s+h} - \delta \right) dr > 0, \ \ \forall t\ge 0. \end{aligned}$$

Hence the theorem. \(\square \)

Proof of Theorem 3.2

Since coefficients of system (2.2) satisfy local Lipschitz condition, hence for any initial value \((x_0,s_0, y_0) \in \mathbb {R}_{+}^{3}\) there is a unique local solution \(x(t),s(t), y(t)\) for \(t\in [0, \tau _{e})\), where \(\tau _e\) is the explosion time. To show this is a global positive solution we need to show that \(\tau _{e} = \infty \). Let \(r_0 \ge 0\) be sufficiently large so that both \(x_0\), \(s_0\) and \(y_0\) lie in the interval \(\displaystyle \left[ \frac{1}{r_0} , r_0 \right] \). We define stopping time \((\tau _r)\) for each integer \(r \ge r_0\) such that

$$\begin{aligned} \tau _r= & {} \inf \left\{ t \in [0, \tau _e) : \min \left\{ x(t), s(t), y(t) \right\} \right. \\< & {} \left. \frac{1}{r} \ \text {or} \ \max \left\{ x(t), s(t), y(t) \right\} > r \right\} , \end{aligned}$$

with \(\inf \phi = \infty \) ( \(\phi \) denotes the empty set). It is easy to observe that \(\tau _r\) increases as \(t \rightarrow \infty \). Here we set \(\displaystyle \tau _{\infty } = \lim _{r \rightarrow \infty } \tau _r \), whence \( \tau _\infty \le \tau _e\) a.s. If it can be proved that \(\tau _\infty = \infty ,\) then it is easy to conclude that \(\tau _e = \infty \) and \((x(t),s(t), y(t)) \in \mathbb {R}^{3}_{+}\) for all \(t \ge 0\) almost surely. So, to complete the proof all we need to prove is that \(\tau _\infty = \infty \). It can be proved by contradiction. Let if possible the statement be false, then there is a pair of constants \(T > 0\) and \(\epsilon \in (0, 1)\) such that

$$\begin{aligned} P \left\{ \tau _\infty \le T \right\} > \epsilon . \end{aligned}$$

So, there exists an integer \(r_1 \ge r_0\) such that

$$\begin{aligned} P \left\{ \tau _\infty \le T \right\} > \epsilon , \ \ \forall r\ge r_1 . \end{aligned}$$
(A.1)

Now we define a \(\mathcal {C}^3\)-function \( F : \mathbb {R}^{3}_{+} \longrightarrow \mathbb {R_{+}} \) by

$$\begin{aligned} F(x,s,y)= & {} (x + 1 - \log (x)) + (s + 1 - \log (s)) \\&+ (y + 1 - \log (y)) \end{aligned}$$

Since \( (z + 1 - \log (z)) \ge 0 , \ \forall z >0 \), it follows that F(xsy) is non negative. Let us apply apply Itô formula to get (defining \(\nu = \max \{ \epsilon \alpha , \eta \beta \}\)):

$$\begin{aligned}&dF(x,s,y) = \left[ \left( 1-\frac{1}{x}\right) x \left( g - \theta x - \frac{\alpha y}{x+s+h} \right) \right. \\&\qquad + \left( 1-\frac{1}{s}\right) s \left( \frac{q}{s} - d_{1} - \frac{\beta y}{x+s+h} \right) \\&\qquad \left. + \left( 1-\frac{1}{y}\right) y \left( \frac{\epsilon \alpha x + \eta \beta s}{x+s+h} - \delta \right) \right] dt \\&\qquad + \left[ (x-1)\sigma _{1} dw_{1} - (s-1) \sigma _{2} dw_{2}\right. \\&\qquad \left. - (y-1) \sigma _{3} dw_{3} \right] \\&\quad = \left[ (x-1) \left( g - \theta x - \frac{\alpha y}{x+s+h} \right) \right. \\&\qquad + (s-1) \left( \frac{q}{s} - d_{1} - \frac{\beta y}{x+s+h} \right) \\&\qquad \left. + (y-1) \left( \frac{\epsilon \alpha x + \eta \beta s}{x+s+h} - \delta \right) \right] dt \\&\qquad + \left[ (x-1)\sigma _{1} dw_{1} - (s-1) \sigma _{2} dw_{2} \right. \\&\qquad \left. - (y-1) \sigma _{3} dw_{3} \right] \\&\le \left( gx - g + \theta x + q -d_{1}s + d_{1} + \nu y \right. \\&\qquad \left. - \delta y + \frac{\sigma _{1}^{2}}{2} + + \frac{\sigma _{2}^{2}}{2} + \frac{\sigma _{3}^{2}}{2} \right) dt \\&\qquad + \left[ (x-1)\sigma _{1} dw_{1} - (s-1) \sigma _{2} dw_{2} \right. \\&\qquad \left. -(y-1) \sigma _{3} dw_{3} \right] \\&\quad = (a_{1}x + a_{2}s + a_{3}y + a_{4})dt + \left[ (x-1)\sigma _{1} dw_{1} \right. \\&\qquad \left. - (s-1) \sigma _{2} dw_{2} - (y-1) \sigma _{3} dw_{3} \right] , \end{aligned}$$

where \(a_{1} = g+\theta \), \(a_{2}= -d_{1}\), \(a_{3}= \nu - \delta \) and \(a_{4} = - \left( g - q - d_{1} - \frac{\sigma _{1}^{2}}{2} - \frac{\sigma _{2}^{2}}{2} - \frac{\sigma _{3}^{2}}{2} \right) \)

$$\begin{aligned} \begin{aligned}&\therefore dF(x,s,y) \le \left[ 2a_{1}(x+1-\log x ) + 2a_{2}(s+1-\log s ) \right. \\&\quad \left. + 2a_{3}(y+1-\log y ) + a_{4} \right] dt \\&\quad + \left[ (x-1)\sigma _{1} dw_{1} - (s-1) \sigma _{2} dw_{2} - (y-1) \sigma _{3} dw_{3} \right] \end{aligned} \end{aligned}$$

Let \( a_{5}= \max \left\{ 2a_{1}, 2a_{2}, 2a_{3}, a_{4} \right\} \) and \( v_{1} \bigwedge v_{2} := \min \{ v_{1}, v_{2} \}\).

$$\begin{aligned}&\therefore dF(x,s,y) \le a_{5} (1+F(x,s,y)) + \left[ (x-1)\sigma _{1} dw_{1} \right. \\&\quad \left. - (s-1) \sigma _{2} dw_{2} - (y-1) \sigma _{3} dw_{3} \right] \end{aligned}$$

Hence for \(t_1 \le T\),

$$\begin{aligned} \begin{aligned}&\int _{0}^{\tau _{r}\bigwedge t_{1}} d(F(x(t),s(t),y(t))) \\&\quad <\int _{0}^{\tau _{r}\bigwedge t_{1}} a_{5} ( 1+ F(x(t),s(t),y(t))) dt \\&\qquad + \int _{0}^{\tau _{r}\bigwedge t_{1}} (x-1) \sigma _{1} dw_{1} - \int _{0}^{\tau _{r}\bigwedge t_{1}} (s-1) \sigma _{2} dw_{2}\\&\qquad -\int _{0}^{\tau _{r}\bigwedge t_{1}} (y-1) \sigma _{3} dw_{3} \end{aligned} \end{aligned}$$

Taking expectation on both sides, we get

$$\begin{aligned} \begin{aligned}&E \left( F \left( x (t),s (t),y (t) \right) \right) \big |_{t=\tau _{r}\bigwedge t_{1}} \\&\quad \le F(x_0,s_0,y_0) + E \int _{0}^{\tau _{r}\bigwedge t_{1}} \\&\qquad a_{5} ( 1+ F(x(t),s(t),y(t))) dt\\&\quad \le F(x_0,s_0, y_0) + a_{5} t_1 \\&\qquad + a_{5} E \int _{0}^{\tau _{r}\bigwedge t_{1}} F(x(t),s(t),y(t)) dt \\&\quad \le F(x_0,s_0, y_0) + a_{5} T \\&\qquad + a_{5} \int _{0}^{t_1} E \left[ F \left( x \left( \tau _{r}\bigwedge t_{1} \right) ,\right. \right. \\&\quad \left. \left. s \left( \tau _{r}\bigwedge t_{1} \right) ,y \left( \tau _{r}\bigwedge t_{1} \right) \right) \right] dt \end{aligned} \end{aligned}$$

By Gronwall inequality [27]:

$$\begin{aligned} E(F( x(\tau _{r}\bigwedge t_{1}), s(\tau _{r}\bigwedge t_{1}),y(\tau _{r}\bigwedge t_{1}))) \le a_{6}, \end{aligned}$$
(A.2)

where \(\displaystyle a_{6} = \left( F(x_0,s_0, y_0) + a_{5} T \right) e ^{a_{5}T}.\)

Define \(\displaystyle \Omega _{r} = \left\{ \tau _r \le T \right\} \) for \(\displaystyle r \ge r_{1} \) and by (A.1), \(P(\Omega _{r}) \ge \epsilon .\) Note that for every \(\tau ^{\prime } \in \Omega _{r}\) there is at least one of \(x(\tau _r,\tau ^{\prime }),s(\tau _r,\tau ^{\prime }), y(\tau _r, \tau ^{\prime } )\) which is equal either r or \(\displaystyle \frac{1}{r}\). So \(F\left( x\left( \tau _r, \tau ^{\prime }\right) ,s(\tau _r,\tau ^{\prime }), y\left( \tau _r, \tau ^{\prime }\right) \right) \) is not less than the smallest of

$$\begin{aligned} \displaystyle r + 1 - \log (r) \ \text {and} \ \frac{1}{r} +1 - \log \left( \frac{1}{r}\right) = \frac{1}{r} + 1 + \log (r). \end{aligned}$$

Consequently,

$$\begin{aligned}&F(x(\tau _r, \tau ^{\prime }),s(\tau _r,\tau ^{\prime }), y(\tau _r, \tau ^{\prime })) \\&\quad \ge \left( r + 1 - \log (r) \right) \bigwedge \left( \frac{1}{r} + 1 + \log (r) \right) . \end{aligned}$$

Now from (A.1) and (A.2), we get

$$\begin{aligned} \begin{aligned} a_6&\ge E [ 1_{\Omega _{r}} F (x(\tau _{r} , \tau ^{\prime }),s(\tau _{r} , \tau ^{\prime }), y(\tau _{r} , \tau ^{\prime }))] \\&\ge \epsilon \left[ \left( r + 1 - \log (r) \right) \bigwedge \left( \frac{1}{r} + 1 + \log (r) \right) \right] , \end{aligned} \end{aligned}$$

where \( 1_{\Omega _{r}} \) is the indicator function of \( \Omega _{r} \). Thus \(r \rightarrow \infty \) leads towards the contradiction \(\infty > a_{6} = \infty \). Hence our assumption was wrong. So, \(\tau _{\infty } = \infty \). \(\square \)

Appendix B

Proof of Theorem 4.1

From (2.2):

$$\begin{aligned} dx = x \left( g - \theta x - \frac{\alpha y}{x+s+h} \right) dt + \sigma _{1} x dw_{1} \end{aligned}$$

Let \(V_{1}(t) = e^{t}x^{p}\) and apply Itô formula:

$$\begin{aligned} \begin{aligned} dV_{1}(t)&= \left[ e^{t}x^{p} + p e^{t}x^{p-1} x \left( g - \theta x - \frac{\alpha y}{x+s+h} \right) \right. \\&\quad \left. + \frac{p(p-1)}{2}e^{t}x^{p} \sigma _{1}^{2} \right] dt + pe^{t}x^{p} \sigma _{1} dw_{1} \\&= pe^{t}x^{p} \left[ \frac{1}{p} + g - \theta x - \frac{\alpha y}{x+s+h} + \frac{p-1}{2}\sigma _{1}^{2} \right] dt \\&\quad + pe^{t}x^{p} \sigma _{1} dw_{1} \end{aligned} \end{aligned}$$

Taking expectation:

$$\begin{aligned}&E(V_{1}(t)) \le x_{0}^{p} + p \int _{0}^{t} e^{r} E \left[ x^{p} \left( \frac{1}{p} + g - \theta x \right. \right. \\&\quad \left. \left. + \frac{p-1}{2}\sigma _{1}^{2} \right) \right] dr . \end{aligned}$$

Let us consider

$$\begin{aligned} f(x) = x^{p} \left( \frac{1}{p} + g - \theta x + \frac{p-1}{2}\sigma _{1}^{2} \right) \end{aligned}$$

Now,

$$\begin{aligned} f^{\prime }(x) = 0 \implies x = \frac{p \left( \frac{1}{p} + g + \frac{p-1}{2}\sigma _{1}^{2} \right) }{\theta (p+1)} = x^{*} \ (\text {say}) . \end{aligned}$$

Calculating at that point we found \(f^{\prime \prime }(x^{*}) < 0\). So, f(x) has maximum at \( \displaystyle x = x^{*}.\)

Hence,

$$\begin{aligned} \begin{aligned} f\big |_{\max }&= \left[ \frac{p\left( \frac{1}{p}+g+\frac{p-1}{2}\sigma _{1}^{2} \right) }{\theta (p+1)} \right] ^{p}\\&\quad \left( \frac{1}{p+1} \left( \frac{1}{p}+g+\frac{p-1}{2}\sigma _{1}^{2} \right) \right) \\&= \left( \frac{p}{\theta }\right) ^{p} \left[ \frac{\frac{1}{p}+g+\frac{p-1}{2}\sigma _{1}^{2}}{p+1} \right] ^{p+1} \end{aligned} \end{aligned}$$

i.e.,

$$\begin{aligned} \begin{aligned}&E(V_{1}(t)) \le x_{0}^{p} + p \left( \frac{p}{\theta }\right) ^{p} \left( \frac{\frac{1}{p}+g+\frac{p-1}{2}\sigma _{1}^{2}}{p+1} \right) ^{p+1} (e^{t}-1) \\&\quad \implies E(x^{p}) \le \left[ x_{0}^{p} - p \left( \frac{p}{\theta }\right) ^{p} \left( \frac{\frac{1}{p}+g+\frac{p-1}{2}\sigma _{1}^{2}}{p+1} \right) ^{p+1} \right] e^{-t} \\&\quad + p \left( \frac{p}{\theta }\right) ^{p} \left( \frac{\frac{1}{p}+g+\frac{p-1}{2}\sigma _{1}^{2}}{p+1} \right) ^{p+1} \end{aligned} \end{aligned}$$

For \(t=0\), \( E(x^{p}) \le x_{0}^{p} \) and for \(t\rightarrow \infty \), \(\displaystyle E(x^{p}) \le p \left( \frac{p}{\theta }\right) ^{p} \left( \frac{\frac{1}{p}+g+\frac{p-1}{2}\sigma _{1}^{2}}{p+1} \right) ^{p+1}.\)

$$\begin{aligned}&\text {Let} \ U_{1}(p)= \max \left\{ x_{0}^{p}, p\left( \frac{p}{\theta }\right) ^{p} \left[ \frac{\frac{1}{p}+g + \frac{p-1}{2}\sigma _{1}^{2}}{p+1} \right] ^{p+1} \right\} . \nonumber \\&\quad \text {So}, \ E(x^{p}) \le U_{1}(p). \end{aligned}$$
(B.1)

Now from second equation of system (2.2), we have

$$\begin{aligned} \begin{aligned} ds&= \left( q - d_{1}s - \frac{\beta sy}{x+s+h} \right) dt - \sigma _{2} s dw_{2} \\&\le \left( q - d_{1}s \right) dt - \sigma _{2} s dw_{2} \end{aligned} \end{aligned}$$

Let \(\phi (t)\) be the unique positive solution satisfying the following equation:

$$\begin{aligned} d\phi (t) = \left( q - d_{1}\phi (t) \right) dt - \sigma _{2} \phi (t) dw_{2} \ \text {with} \ \phi (0)= s_{0} . \end{aligned}$$

We consider, \(V_{2}(t) = e^{t}\phi ^{p}\) and apply Itô formula:

$$\begin{aligned} \begin{aligned} d(e^{t}\phi ^{p})&= \left[ e^{t}\phi ^{p} + p e^{t}\phi ^{p-1} (q - d_{1}\phi )+ \frac{p(p-1)}{2} e^{t}\phi ^{p} \sigma _{2}^{2} \right) dt\\&\quad - p e^{t}\phi ^{p} \sigma _{2} dw_{2} \\&= p e^{t}\phi ^{p-1} \left[ q + \phi \left( \frac{1}{p} - d_{1} + \frac{p-1}{2}\sigma _{2}^{2} \right) \right] dt \\&\quad - p e^{t}\phi ^{p}\sigma _{2} dw_{2} \end{aligned} \end{aligned}$$

Taking expectation on both sides, we get

$$\begin{aligned}&E(e^{t}\phi ^{p}) \le \phi (0)^{p} + p \int _{0}^{t} e^{r} E\left[ \phi ^{p-1}\left\{ q+ \phi \left( \frac{1}{p}\right. \right. \right. \\&\quad \left. \left. \left. -d_{1} + \frac{p-1}{2}\sigma _{2}^{2} \right) \right\} \right] dr. \end{aligned}$$

Let \(\displaystyle g(\phi ) = \phi ^{p-1}\left\{ q+ \phi \left( \frac{1}{p}-d_{1} + \frac{p-1}{2}\sigma _{2}^{2} \right) \right\} \) \(\displaystyle \therefore g^{\prime }(\phi ) = 0 \ \implies \ \phi (t) = \frac{q(1-p)}{p \left( \frac{1}{p}-d_{1} + \frac{p-1}{2}\sigma _{2}^{2} \right) }. \)

Hence, \(\displaystyle g\big |_{\max } = \left( \frac{q}{p}\right) ^{p} \left[ \frac{1-p}{\frac{1}{p}-d_{1} + \frac{p-1}{2}\sigma _{2}^{2}} \right] ^{p-1}. \) Same as calculated previously we can show that \(\displaystyle E(\phi ) \le \max \left\{ \phi (0)^{p}, p \left( \frac{q}{p}\right) ^{p} \left[ \frac{1-p}{\frac{1}{p}-d_{1} + \frac{p-1}{2}\sigma _{2}^{2}} \right] ^{p-1} \right\} \).

Since \(s(t) \le \phi (t)\) and \( s_{0}=\phi (0)\), so by comparison theorem, we can conclude that

$$\begin{aligned}&E(s(t)) \le U_{2}(t), \ \text {where} \ U_{2}(t) \nonumber \\&\quad = \max \left\{ s_{0}^{p}, p \left( \frac{q}{p}\right) ^{p} \left[ \frac{1-p}{\frac{1}{p}-d_{1} + \frac{p-1}{2}\sigma _{2}^{2}} \right] ^{p-1} \right\} . \end{aligned}$$
(B.2)

Again, from third equation of system (2.2), we have

$$\begin{aligned} dy = y \left( \frac{\epsilon \alpha x + \eta \beta s}{x+s+h} - \delta \right) dt - \sigma _{3} y dw_{3}. \end{aligned}$$

Let us consider \(\displaystyle V_{3}(t) = \log _{e} y(t)\) and apply Itô formula:

$$\begin{aligned} \begin{aligned} d(\log y(t))&= \left( \frac{\epsilon \alpha x + \eta \beta s}{x+s+h} - \delta - \frac{\sigma _{3}^{2}}{2} \right) dt - \sigma _{3} dw_{3} \\&\le \left( \nu - \delta - \frac{\sigma _{3}^{2}}{2} \right) dt - \sigma _{3} dw_{3}, \\&\quad \text {where} \ \nu = \max \left\{ \epsilon \alpha , \eta \beta \right\} \\ \implies \log y(t)&\le \log y_{0} + \left( \nu - \delta - \frac{\sigma _{3}^{2}}{2} \right) t - M_{3} \\ \implies y(t)&\le y_{0} e^{\left( \nu - \delta - \frac{\sigma _{3}^{2}}{2} \right) t - M_{3}} \\ \implies y^{p}(t)&\le y_{0}^{p} e^{p \left( \nu - \delta - \frac{\sigma _{3}^{2}}{2} \right) t - p M_{3}} \end{aligned} \end{aligned}$$

Taking expectation (by Lemma 4.1):

$$\begin{aligned} E(y^{p}(t))&\le y_{0}^{p} E\left( e^{p \left( \nu - \delta - \frac{\sigma _{3}^{2}}{2} \right) t - p M_{3}} \right) \nonumber \\&= y_{0}^{p} e^{p \left( \nu - \delta - \frac{\sigma _{3}^{2}}{2} \right) t + \frac{p^{2}\sigma _{3}^{2}}{2}t} \nonumber \\&= y_{0}^{p} e^{p \left( \nu - \delta + \frac{p-1}{2}\sigma _{3}^{2} \right) t } \nonumber \\&\text {Now for} \ \nu + \frac{p-1}{2}\sigma _{3}^{2} < \delta , \ E(y^{p}(t) \le y_{0}^{p} \end{aligned}$$
(B.3)

Hence, (B.1) and (B.3) conclude the theorem. \(\square \)

Appendix C

Proof of Theorem 5.1

From (2.2), we have

$$\begin{aligned} dx = x \left( g - \theta x - \frac{\alpha y}{x+s+h} \right) dt + \sigma _{1} x dw_{1}. \end{aligned}$$

Let us take \(F_{1}(t) = \log x(t)\) and apply Itô formula

$$\begin{aligned} \begin{aligned} d(\log x(t))&= \left( g - \theta x - \frac{\alpha y }{x+s+h} - \frac{\sigma _{1}^{2}}{2} \right) dt + \sigma _{1} dw_{1} \\&\le \left( g - \frac{\sigma _{1}^{2}}{2} \right) dt + \sigma _{1} dw_{1} \end{aligned} \end{aligned}$$

Integrating and dividing both sides by t, we have

$$\begin{aligned} \begin{aligned}&\frac{\log x(t)}{t} \le \frac{\log x_{0}}{t} + g - \frac{\sigma _{1}^{2}}{2} + \frac{M_{1}}{t} \\&\quad \implies \limsup _{t\rightarrow \infty } \frac{\log x(t)}{t} = g - \frac{\sigma _{1}^{2}}{2} \end{aligned} \end{aligned}$$

Hence, \(\displaystyle \lim _{t\rightarrow \infty } x(t) = 0 \ \ a.s. \ if \ \ g< \frac{\sigma _{1}^{2}}{2}\).

Therefore, for every \(\epsilon ^{\prime }> 0,\ \exists \ t_{0} ( > 0 )\) and \(\Omega _{\epsilon ^{\prime }}\) s.t. \( P(\Omega _{\epsilon ^{\prime }}) \ge 1- \epsilon ^{\prime } \) and \( x < \epsilon ^{\prime },\ \forall t \ge t_{0},\ x \in \Omega _{\epsilon ^{\prime }}.\)

Now, from last equation of system (2.2), we have

$$\begin{aligned} \begin{aligned} dy = y \left( \frac{\epsilon \alpha x + \eta \beta s}{x+s+h} - \delta \right) dt - \sigma _{3} y dw_{3} \end{aligned} \end{aligned}$$

Proceeding as before:

$$\begin{aligned} \begin{aligned} d(\log y(t))&= \left( \frac{\epsilon \alpha x + \eta \beta s}{x+s+h} - \delta - \frac{\sigma _{3}^{2}}{2} \right) dt - \sigma _{3} dw_{3} \\&\le \left( \frac{\epsilon \alpha x + \eta \beta s}{h} - \delta - \frac{\sigma _{3}^{2}}{2} \right) dt - \sigma _{3} dw_{3} \\&\le \left( \frac{\epsilon \alpha \epsilon ^{\prime } + \eta \beta s_{0}}{h} - \delta - \frac{\sigma _{3}^{2}}{2} \right) dt \\&\quad -\sigma _{3} dw_{3} \ [\because x < \epsilon ^{\prime } \ \text {and using} \ Theorem~4.1.] \\&\quad \therefore \frac{\log y(t)}{t} \le \frac{\log y_{0}}{t} \\&\quad + \left( \frac{\epsilon \alpha \epsilon ^{\prime } + \eta \beta s_{0}}{h} - \delta - \frac{\sigma _{3}^{2}}{2} \right) - \frac{M_{3}}{t} \\&\implies \limsup _{t\rightarrow \infty } \frac{\log y(t)}{t} \le \frac{\epsilon \alpha \epsilon ^{\prime } + \eta \beta s_{0}}{h} - \delta - \frac{\sigma _{3}^{2}}{2} \end{aligned} \end{aligned}$$

Since \(\epsilon ^{\prime }\) is arbitrarily small, so we can conclude that

$$\begin{aligned} \displaystyle \lim _{t\rightarrow \infty } y(t) = 0 \ \ a.s. \ \text {if} \ \ \frac{\eta \beta s_{0}}{h}< \delta + \frac{\sigma _{3}^{2}}{2}. \end{aligned}$$

Hence the theorem. \(\square \)

Appendix D

Proof of Theorem 6.1

From (2.2):

$$\begin{aligned} dx = x \left( g - \theta x - \frac{\alpha y}{x+s+h} \right) dt + \sigma _{1} x dw_{1} \end{aligned}$$

We take \(\displaystyle \Gamma _{1}(x(t),y(t)) := x \left( g - \theta x - \frac{\alpha y}{x+s+h} \right) \) and \(\displaystyle \Gamma _{2}(x(t),y(t)) := \sigma _{1} x.\)

Hence, \(\displaystyle dx = \Gamma _{1}(x(t),s(t),y(t)) dt + \Gamma _{2}(x(t),s(t),y(t)) dw_{1}. \)

Using Theorem 4.1:

$$\begin{aligned} \begin{aligned}&E\left| \Gamma _{1}(x(t),s(t),y(t))\right| ^{p} \\&\quad \le \frac{1}{2} E |x|^{2p} + \frac{1}{2} E \left| (g + \theta x + \alpha y \right| ^{2p} \ [\because A.M. \ge G.M.] \\&\quad \le \frac{1}{2} E (x^{2p}) + \frac{4^{2p-1}}{2} \left[ g^{2p} + \theta ^{2p} E(x^{2p}) + \alpha ^{2p} E(y^{2p}) \right] \\&\quad = \left( \frac{1}{2} + \frac{4^{2p-1}}{2} \theta ^{2p} \right) E(x^{2p}) \\&\qquad + \frac{4^{2p-1}}{2} g^{2p} + \frac{4^{2p-1}}{2} \alpha ^{2p} E(y^{2p}) \\&\quad \le \left( \frac{1}{2} + \frac{4^{2p-1}}{2} \theta ^{2p} \right) U_{1}(2p) + \frac{4^{2p-1}}{2} g^{2p}\\&\qquad + \frac{4^{2p-1}}{2}\alpha ^{2p} y_{0}^{2p} \\&\quad = K_{1}(p) \ (\mathrm {say}) \end{aligned} \end{aligned}$$

Also, \(\displaystyle E\left| \Gamma _{2}(x(t),s(t),y(t))\right| ^{p} \le \sigma _{1}^{p} U_{1}(p) = K_{2}(p) \ (\mathrm {say})\)

Now, we write the differential equation in its scholastic integral form:

$$\begin{aligned} x(t)= & {} x_{0} + \int _{0}^{t} \Gamma _{1}(x(r),s(r),y(r)) dr\\&+\int _{0}^{t} \Gamma _{2}(x(r),s(r),y(r)) dw_{1}(r) \end{aligned}$$

From moment inequality [27] of Itô for \(0 \le t_1< t_2 < \infty \) and \(p \ge 2\), we have

$$\begin{aligned}&E \left| \int _{t_{1}}^{t_{2}} \Gamma _{2}(x(r),s(r),y(r)) dw_{1}(r) \right| ^{p} \nonumber \\&\quad \le \left[ \frac{p(p-1)}{2} \right] ^{\frac{p}{2}} (t_2 - t_1)^{\frac{p-2}{2}} \int _{t_{1}}^{t_{2}} \left| \Gamma _{2}(x(r),\right. \nonumber \\&\qquad \left. s(r),y(r)) \right| ^{p} dr \end{aligned}$$
(D.1)

Now, we apply Hölder’s inequality for \(t_{2} - t_{1} \le 1\) and using (D.1),

$$\begin{aligned} \begin{aligned}&E|x(t_2)-x(t_{1})|^{p} \le 2^{p-1}E \left[ \int _{t_1}^{t_2} \Gamma _{1}(x(r),s(r),y(r)) dr \right] ^{p} \\&\qquad + 2^{p-1}E \left[ \int _{t_1}^{t_2} \Gamma _{2}(x(r),s(r),y(r)) dw_{1}(r) \right] ^{p} \\&\le 2^{p-1} (t_{2}-t_{1})^{(p-1)} \int _{t_1}^{t_2} K_{1}(p) ds \\&\qquad +2^{p-1}\left[ \frac{p(p-1)}{2} \right] ^{\frac{p}{2}} (t_2 - t_1)^{\frac{p-2}{2}} \int _{t_{1}}^{t_{2}} K_{2}(p) ds\\&= 2^{p-1} (t_{2}-t_{1})^{p} K_{1}(p) + 2^{p-1}\left[ \frac{p(p-1)}{2} \right] ^{\frac{p}{2}} (t_{2}-t_{1})^{\frac{p}{2}} K_{2}(p) \\&\le 2^{p-1} (t_{2}-t_{1})^{\frac{p}{2}} \left[ 1+ \frac{p(p-1)}{2} \right] \left( K_{1}(p) + K_{2}(p) \right) \end{aligned} \end{aligned}$$

Hence, it can be concluded that every sample path of x(t) is locally but uniformly Hölder continuous with exponent \(\gamma \in \left( 0 , \frac{p-2}{2p} \right) \), i.e, every sample path of x(t) is uniformly continuous on \(t\ge 0\). Similarly, it can be shown that every sample path of s(t) and y(t) is uniformly continuous on \(t\ge 0\).

Proof of Theorem 6.2

We know that

$$\begin{aligned} d(\log x(t)) = \left( g - \theta x - \frac{\alpha y }{x+s+h} - \frac{\sigma _{1}^{2}}{2} \right) dt + \sigma _{1} dw_{1} \end{aligned}$$

Now, integrating both side and dividing by t, we get

$$\begin{aligned}&\frac{\log x(t) - \log x_{0}}{t} = \left( g - \frac{\sigma _{1}^{2}}{2} \right) - \frac{\theta }{t}\int _{0}^{t} x(r)dr \\&\quad - \frac{\alpha }{t} \int _{0}^{t}\frac{y(r)}{x(r) +s(r) +h} dr + \frac{M_{1}}{t} = H_{1}(t)(\text {say}). \end{aligned}$$

Applying Itô formula on the one dimensional stochastic system (6.1), we get

$$\begin{aligned} d(\log z(t)) = \left( g - \theta z - \frac{\sigma _{1}^{2}}{2} \right) dt + \sigma _{1} dw_{1} \end{aligned}$$

Now, integrating both side and dividing by t, we get

$$\begin{aligned} \frac{\log z(t) - \log z_{0}}{t}= & {} \left( g - \frac{\sigma _{1}^{2}}{2} \right) - \frac{\theta }{t}\int _{0}^{t} z(r)dr \\&+ \frac{M_{1}}{t} = H_{2}(t)(\text {say}). \end{aligned}$$

Clearly, \(H_{1}(t) \le H_{2}(t)\)

$$\begin{aligned} \therefore \frac{\theta }{t} \int _{0}^{t} (z(r)-x(r))dr\le & {} \frac{\alpha }{t} \int _{0}^{t} \frac{y(r)}{x(r) +s(r) +h} dr \nonumber \\\le & {} \frac{\alpha }{th} \int _{0}^{t} y(r) dr \end{aligned}$$
(D.2)

Applying Itô formula on third equation of system (2.2), we have

$$\begin{aligned} d(\log y(t))&= \left[ \frac{\epsilon \alpha x + \eta \beta s}{x+s+h} - \delta - \frac{\sigma _{3}^{2}}{2} \right] dt - \sigma _{3} dw_{3} \\&\ge \left[ \frac{\epsilon \alpha x }{x+s_{0}+h} - \delta - \frac{\sigma _{3}^{2}}{2} \right] dt - \sigma _{3} dw_{3} \\&= \left[ \frac{\epsilon \alpha z }{z+s_{0}+h} - \left( \frac{\epsilon \alpha z }{z+s_{0}+h} - \frac{\epsilon \alpha x }{x+s_{0}+h} \right) \right. \\&\quad \left. - \delta - \frac{\sigma _{3}^{2}}{2} \right] dt - \sigma _{3} dw_{3} \\&= \left[ \frac{\epsilon \alpha z }{z+s_{0}+h} - \left( \frac{\epsilon \alpha (s_0+h) (z-x) }{(z+s_{0}+h) (x+s_{0}+h)} \right) \right. \\&\quad \left. - \delta - \frac{\sigma _{3}^{2}}{2} \right] dt - \sigma _{3} dw_{3} \\&\ge \left[ \frac{\epsilon \alpha z }{z+s_{0}+h} - \frac{\epsilon \alpha }{(s_0+h)}(z-x) - \delta - \frac{\sigma _{3}^{2}}{2} \right] dt\\&\quad - \sigma _{3} dw_{3} \end{aligned}$$

Integrating and dividing both sides by t, we get

$$\begin{aligned} \begin{aligned}&\frac{\log y(t) - \log y_{0}}{t} \ge \frac{\epsilon \alpha }{t} \int _{0}^{t} \frac{z(r)}{z(r)+s_{0}+h}dr \\&\qquad - \frac{\epsilon \alpha }{(s_0+h)t} \int _{0}^{t}(z(r)-x(r))dr - \delta - \frac{\sigma _{3}^{2}}{2} - \frac{M_{3}}{t} \\&\quad \ge \frac{\epsilon \alpha }{t} \int _{0}^{t} \frac{z(r)}{z(r)+s_{0}+h} dr \\&\qquad - \frac{\epsilon \alpha ^{2}}{(s_0+h)h \theta t} \int _{0}^{t}y(r)dr - \delta - \frac{\sigma _{3}^{2}}{2} - \frac{M_{3}}{t} \\&= \epsilon \alpha \int _{0}^{\infty } \frac{z}{z+s_{0}+h} \mu (x) dx - \epsilon ^{\prime } - \frac{\epsilon \alpha ^{2}}{(s_0+h)h \theta } \left\langle y \right\rangle _{t}\\&\qquad - \delta - \frac{\sigma _{3}^{2}}{2}- \frac{M_{3}}{t} \\&= \Delta - \epsilon ^{\prime } - \frac{\epsilon \alpha ^{2}}{(s_0+h)h \theta } \left\langle y \right\rangle _{t} - \frac{M_{3}}{t}. \end{aligned} \end{aligned}$$

For sufficiently large t, applying Lemma 6.2 (b) and using arbitrariness of \(\epsilon ^{\prime }\) it can be derived that

$$\begin{aligned} \liminf _{t\rightarrow \infty } \left\langle y \right\rangle _{t} = \frac{\Delta (s_0+h)h \theta }{\epsilon \alpha ^{2}}, \ \text {a.s.} \end{aligned}$$

So, system (2.2) will be persistent in mean if \(\Delta > 0\). Hence the theorem. \(\square \)

Appendix E

Proof of Theorem 7.1

Let us consider \(F(t) = |x_{1}(t)-x_{2}(t)| + \theta _{1}|s_{1}(t)-s_{2}(t)| + \theta _{2} |y_{1}(t)-y_{2}(t)| \) and apply Itô formula on system (2.2), where \(\theta _{1}\) and \(\theta _{2}\) are real constants which can be chosen as requirement.

$$\begin{aligned} \begin{aligned}&L(F(t)) = sgn \left( x_{1}(t) - x_{2}(t) \right) \left[ gx_{1} - \theta x_{1}^{2} - \frac{\alpha x_{1}y_{1}}{x_{1}+s_{1}+h} \right. \\&\qquad \left. - gx_{2} + \theta x_{2}^{2} + \frac{\alpha x_{2}y_{2}}{x_{2}+s_{2}+h} \right] dt \\&\quad + \theta _{1} sgn \left( s_{1}(t) - s_{2}(t) \right) \left[ -d_{1}s_{1} - \frac{\beta s_{1}y_{1}}{x_{1}+s_{1}+h} \right. \\&\qquad \left. + d_{1}s_{2} + \frac{\beta s_{2}y_{2}}{x_{2}+s_{2}+h} \right] dt \\&\qquad + \theta _{2} sgn \left( y_{1}(t) - y_{2}(t) \right) \left[ \frac{\epsilon \alpha x_{1}y_{1} + \eta \beta s_{1}y_{1}}{x_{1}+s_{1}+h} - \delta y_{1}\right. \\&\qquad \left. - \frac{\epsilon \alpha x_{2}y_{2} + \eta \beta s_{2}y_{2}}{x_{2}+s_{2}+h} + \delta y_{2} \right] dt \\&\quad = sgn \left( x_{1}(t) - x_{2}(t) \right) \left[ g(x_{1} - x_{2})- \theta (x_{1}+x_{2})(x_{1}-x_{2})\right. \\&\qquad \left. - \alpha \frac{x_{1}y_{1} (x_{2}+s_{2}+h) - x_{2}y_{2}(x_{1}+s_{1}+h)}{(x_{1}+s_{1}+h)(x_{2}+s_{2}+h)} \right] dt\\&\qquad + \theta _{1} sgn \left( s_{1}(t) - s_{2}(t) \right) \end{aligned} \end{aligned}$$
$$\begin{aligned} \begin{aligned}&\left[ -d_{1}(s_{1} - s_{2}) - \beta \frac{s_{1}y_{1}(x_{2}+s_{2}+h) - s_{2}y_{2}(x_{1}+s_{1}+h)}{(x_{1}+s_{1}+h)(x_{2}+s_{2}+h)} \right] dt + \theta _{2} sgn \left( y_{1}(t) \right. \\&\qquad \left. - y_{2}(t) \right) \left[ \frac{(\epsilon \alpha x_{1}y_{1} + \eta \beta s_{1}y_{1})(x_{2}+s_{2}+h) - (\epsilon \alpha x_{2}y_{2} + \eta \beta s_{2}y_{2})(x_{1}+s_{1}+h) }{(x_{1}+s_{1}+h)(x_{2}+s_{2}+h)} \right. \\&\quad \left. - \delta (y_{1}- y_{2}) \right] dt \\&\quad = \left\{ \left[ g - \theta (x_{1}+x_{2}) - \frac{\alpha (y_2s_2+hy_1)}{(x_{1}+s_{1}+h)(x_{2}+s_{2}+h)} - \frac{\theta _1 \beta s_2 y_2}{(x_{1}+s_{1}+h)(x_{2}+s_{2}+h)} \right. \right. \\&\qquad \left. \left. + \theta _{2} \frac{\epsilon \alpha (y_2s_2+y_1h)+\eta \beta s_{2}y_{2}}{(x_{1}+s_{1}+h)(x_{2}+s_{2}+h)} \right] |x_1-x_2|+ \left[ - d_1 \theta _1 \right. \right. \\&\qquad \left. \left. -\frac{\alpha x_2 y_2 + \theta _1 \beta (x_2 y_2 + y_1 h) - \theta _2 \epsilon \alpha x_2 y_2 - \theta _2 \eta \beta (x_2 y_2 + y_1 h)}{(x_{1}+s_{1}+h)(x_{2}+s_{2}+h)} \right] |s_1-s_2| + \left[ - \delta \theta _2 \right. \right. \\&\qquad \left. \left. -\frac{\alpha (x_1x_2+x_1s_2+x_2h)+\theta _1 \beta (s_1s_2+s_1x_2+s_2h) - \theta _2 \alpha \epsilon (x_1x_2+x_1s_2+x_2h)}{(x_{1}+s_{1}+h)(x_{2}+s_{2}+h)} \right. \right. \\&\qquad \left. \left. - \frac{\theta _2 \eta \beta (s_1s_2+s_1x_2+s_2h)}{(x_{1}+s_{1}+h)(x_{2}+s_{2}+h)} \right] |y_1-y_2| \right\} dt \\&\quad \le \left\{ \left[ g- 2\theta m - \frac{(y_2s_2+hy_1)(\alpha - \theta _2 \epsilon \alpha ) + s_2y_2(\theta _1 \beta - \eta \beta \theta _2)}{(x_{1}+s_{1}+h)(x_{2}+s_{2}+h)} \right] |x_1-x_2| \right. \\&\qquad \left. + \left[ - d_1 \theta _1 - \frac{(\alpha -\theta _2\epsilon \alpha )x_2y_2 + (\theta _1\beta -\theta _2 \eta \beta )(x_2y_2+y_1h)}{(x_{1}+s_{1}+h)(x_{2}+s_{2}+h)} \right] |s_1-s_2| \right. \\&\qquad \left. + \left[ - \delta \theta _2 - \frac{N}{(x_{1}+s_{1}+h)(x_{2}+s_{2}+h)} \right] |y_1-y_2| \right\} dt \\&\qquad [\because m\le E(x(t)), m \ \textit{is as defined in}~4.2 ] \end{aligned} \end{aligned}$$

where \(N= (\alpha -\theta _2\epsilon \alpha )(x_1x_2+x_1s_2+x_2h) + (\theta _1\beta -\theta _2 \eta \beta )(s_1s_2+s_1x_2+s_2h)\).

Now we chose \(\displaystyle \theta _{1} = \frac{\eta }{\epsilon }\) and \(\displaystyle \theta _{2} = \frac{1}{\epsilon }\)

$$\begin{aligned} \begin{aligned}&\therefore L(F(t)) \le \left[ (g-2\theta m)|x_1-x_2| - \frac{d_1\eta }{\epsilon }|s_1-s_2| \right. \\&\quad \left. - \frac{\delta }{\epsilon }|y_1-y_2| \right] dt \\&\quad \implies F(t) \le F(0) + (g-2\theta m) \int _{0}^{t} |x_{1}(r) - x_{2}(r)|dr \\&\quad - \frac{d_1\eta }{\epsilon } \int _{0}^{t} |s_{1}(r) - s_{2}(r)|dr - \frac{\delta }{\epsilon } \int _{0}^{t} |y_{1}(r) - y_{2}(r)|dr \end{aligned} \end{aligned}$$

Taking expectation:

$$\begin{aligned} \begin{aligned}&E(F(t)) \le E(F(0)) + (g-2\theta m) \int _{0}^{t} E |x_{1}(r) - x_{2}(r)|dr \\&\quad - \frac{d_1\eta }{\epsilon } \int _{0}^{t} E |s_{1}(r) - s_{2}(r)|dr - \frac{\delta }{\epsilon } \int _{0}^{t} E |y_{1}(r) - y_{2}(r)|dr \\&\quad \implies E(F(t)) + (2\theta m -g) \int _{0}^{t} E |x_{1}(r) - x_{2}(r)|dr \\&\quad + \frac{d_1\eta }{\epsilon } \int _{0}^{t} E |s_{1}(r) - s_{2}(r)|dr \\&\quad + \frac{\delta }{\epsilon } \int _{0}^{t} E |y_{1}(r) - y_{2}(r)|dr \le F(0) < \infty \end{aligned} \end{aligned}$$

So, it is obvious that \( \int _{0}^{t} E |x_{1}(r) - x_{2}(r)|dr < \infty \), \( \int _{0}^{t} E |s_{1}(r) - s_{2}(r)|dr < \infty \) and \( \int _{0}^{t} E |y_{1}(r) - y_{2}(r)|dr < \infty , \)

i.e., \( E |x_{1}(t) - x_{2}(t)|, E |s_{1}(t) - s_{2}(t)|, E |y_{1}(t) - y_{2}(t)| \in L^{1}[0,\infty ). \)

So, \(\lim _{t\rightarrow \infty }E |x_{1}(t) - x_{2}(t)|= \lim _{t\rightarrow \infty }E |s_{1}(t) - s_{2}(t)|= \lim _{t\rightarrow \infty }E |y_{1}(t) - y_{2}(t)|=0.\)

Hence, \(\lim _{t\rightarrow \infty } \left\{ E |x_{1}(t) - x_{2}(t)| + E |s_{1}(t) - s_{2}(t)| \right. \left. + E |y_{1}(t) - y_{2}(t)|\right\} =0.\)

Hence the theorem. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Samanta, G.P. Modelling the effect of resource subsidy on a two-species predator-prey system under the influence of environmental noises. Int. J. Dynam. Control 9, 1800–1817 (2021). https://doi.org/10.1007/s40435-020-00750-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-020-00750-8

Keywords

Navigation