Skip to main content
Log in

An improved relay feedback identification technique for Hammerstein model

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

This research work is motivated by the success of relay feedback in linear system domain thereby an attempt has been made at extending it to nonlinear Hammerstein models. The identification is carried out using a relay with hysteresis in feedback, the parameter estimation is done solely by solving state-space equations at various points on one cycle of the input and output signals. The work considers not all but wider probable cases of the linear subsystem-real roots, complex conjugate roots, first order plus dead time systems, integrating second order plus dead time and repeated roots. The proposed method is simple compared to other works in literature as well as applicable to unstable systems. Simulations of various examples are carried out to demonstrate the efficacy of the proposed identification scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Åström KJ, Hägglund T (1984) Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20(5):645–651

    Article  MathSciNet  Google Scholar 

  2. Narendra KS, Gallman PG (1966) An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Trans Autom Control 11(3):546–550

    Article  Google Scholar 

  3. Luyben WL, Eskinat E (1994) Nonlinear auto-tune identification. Int J Control 59(3):595–626

    Article  MathSciNet  Google Scholar 

  4. Huang HP, Lee MW, Tang YT (1998) Identification of Wiener model using relay feedback test. J Chem Eng Jpn 31(4):604–612

    Article  Google Scholar 

  5. Huang HP, Lee MW, Tsai CY (2001) Structure identification for block-oriented nonlinear models using relay feedback tests. J Chem Eng Jpn 34(6):748–756

    Article  Google Scholar 

  6. Lee MW, Huang HP, Jeng JC (2004) Identification and controller design for nonlinear processes using relay feedback. J Chem Eng Jpn 37(10):1194–1206

    Article  Google Scholar 

  7. Park HC, Koo DG, Youn JH, Lee J, Sung SW (2004) Relay feedback approaches for the identification of Hammerstein-type nonlinear processes. Ind Eng Chem Res 43(3):735–740

    Article  Google Scholar 

  8. Jeng JC, Lee MW, Huang HP (2005) Identification of block-oriented nonlinear processes using designed relay feedback tests. Ind Eng Chem Res 44(7):2145–2155

    Article  Google Scholar 

  9. Balestrino A, Landi A, Ould-Zmirli M, Sani L (2001) Automatic nonlinear auto-tuning method for Hammerstein modeling of electrical drives. IEEE Trans Ind Electron 48(3):645–655

    Article  Google Scholar 

  10. Chou D (2006) Efficacy of Hammerstein models in capturing the dynamics of isometric muscle stimulated at various frequencies. Ph.D. thesis, Massachusetts Institute of Technology

  11. Jurado F (2006) A method for the identification of solid oxide fuel cells using a Hammerstein model. J Power Sour 154(1):145–152

    Article  Google Scholar 

  12. Antonello R, Carraro M, Tinazzi F, Zigliotto M (2013) Parametric identification of PM synchronous motors: A Hammerstein-model approach. In: 2013 IEEE international conference on mechatronics (ICM). IEEE, pp 174–179

  13. Holcomb CM, de Callafon RA, Bitmead RR (2014) Closed-loop identification of Hammerstein systems with application to gas turbines. IFAC Proc Vol 47(3):493–498

    Article  Google Scholar 

  14. Wang DF, Ren YY, Liu CL, Han P (2014) Identification of thermal process using Hammerstein model based on particle swarm optimization algorithm. In: Unifying electrical engineering and electronics engineering. Springer, pp 1961–1968

  15. Yi Y, Chen D (2019) Disturbance observer-based backstepping sliding mode fault-tolerant control for the hydro-turbine governing system with dead-zone input. ISA Trans 88:127–141

    Article  Google Scholar 

  16. Yi Y, Zhang Z, Chen D, Zhou R, Patelli E, Tolo S (2018) State feedback predictive control for nonlinear hydro-turbine governing system. J Vib Control 24(21):4945–4959

    MathSciNet  Google Scholar 

  17. Xue Y, Zheng BC, Li T, Li Y (2017) Robust adaptive state feedback sliding-mode control of memristor-based Chua’s systems with input nonlinearity. Appl Math Comput 314:142–153

    MathSciNet  MATH  Google Scholar 

  18. Wu H, Lam J, Su H (2019) Global consensus of positive edge system with sector input nonlinearities. IEEE Trans Syst Man Cybern Syst

  19. Ouyang L, Wu M, She J (2017) Estimation of and compensation for unknown input nonlinearities using equivalent-input-disturbance approach. Nonlinear Dyn 88(3):2161–2170

    Article  Google Scholar 

  20. Hu Q, Ma G, Xie L (2008) Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity. Automatica 44(2):552–559

    Article  MathSciNet  Google Scholar 

  21. Mehta U, Majhi S (2010) Identification of a class of Wiener and Hammerstein-type nonlinear processes with monotonic static gains. ISA Trans 49(4):501–509

    Article  Google Scholar 

  22. Meher T, Majhi S (2018) Relay based identification of Hammerstein model. Int J Dyn Control 6(4):1599–1607

    Article  MathSciNet  Google Scholar 

  23. Juric Z, Hanjalic S, Sehovic H (2013) Closed-loop frequency-based identification method for Hammerstein type plants with a transport delay using a relay feedback. In: 2013 XXIV international conference on information. communication and automation technologies (ICAT). IEEE, pp 1–8

  24. Chang F, Luus R (1971) A noniterative method for identification using Hammerstein model. IEEE Trans Autom Control 16(5):464–468

    Article  Google Scholar 

  25. Haist N, Chang F, Luus R (1973) Nonlinear identification in the presence of correlated noise using a Hammerstein model. IEEE Trans Autom Control 18(5):552–555

    Article  Google Scholar 

  26. Hsia T (1976) A multi-stage least squares method for identifying Hammerstein model nonlinear systems. In: 1976 IEEE conference on decision and control including the 15th symposium on adaptive processes, vol 15. IEEE, pp 934–938

  27. Zhang B, Mao Z (2017) Bias compensation principle based recursive least squares identification method for Hammerstein nonlinear systems. J Frankl Inst 354(3):1340–1355

    Article  MathSciNet  Google Scholar 

  28. Ma L, Liu X (2017) A novel apso-aided weighted lssvm method for nonlinear hammerstein system identification. J Frankl Inst 354(4):1892–1906

    Article  MathSciNet  Google Scholar 

  29. Ding F, Chen H, Xu L, Dai J, Li Q, Hayat T (2018) A hierarchical least squares identification algorithm for hammerstein nonlinear systems using the key term separation. J Frankl Inst 355(8):3737–3752

    Article  MathSciNet  Google Scholar 

  30. Billings S, Fakhouri S (1979) Non-linear system identification using the Hammerstein model. Int J Syst Sci 10(5):567–578

    Article  MathSciNet  Google Scholar 

  31. Stoica P, Söderstrom T (1982) Instrumental-variable methods for identification of Hammerstein systems. Int J Control 35(3):459–476

    Article  MathSciNet  Google Scholar 

  32. Greblicki W, Pawlak M (1986) Identification of discrete Hammerstein systems using kernel regression estimates. IEEE Trans Autom Control 31(1):74–77

    Article  Google Scholar 

  33. Greblicki W, Pawlak M (1989) Recursive nonparametric identification of hammerstein systems. J Frankl Inst 326(4):461–481

    Article  MathSciNet  Google Scholar 

  34. Krzyzak A (1989) Identification of discrete Hammerstein systems by the Fourier series regression estimate. Int J Syst Sci 20(9):1729–1744

    Article  MathSciNet  Google Scholar 

  35. Majhi S (2007) Relay based identification of processes with time delay. J Process Control 17(2):93–101

    Article  Google Scholar 

  36. Yu CC (2006) Autotuning of PID controllers: a relay feedback approach. Springer, Berlin

    MATH  Google Scholar 

  37. Daubechies I et al (1992) Ten Lectures on Wavelets, vol 61. SIAM

  38. Majhi S, Atherton D (1999) Autotuning and controller design for processes with small time delays. IEE Proc Control Theory Appl 146(5):415–425

    Article  Google Scholar 

  39. Wavelet Toolbox 418 M (2017) version 9.2.0.556344 (R2017a). The MathWorks Inc., Natick, MA

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trusna Meher.

Appendix

Appendix

For the critically damped case the values of the matrices are given as,

$$\begin{aligned} \mathbf{A }&= \left[ { \begin{array}{cc} -a &{} 1 \\ 0 &{} -a \end{array} }\right] ;&\mathbf{B }= \left[ { \begin{array}{c} 0 \\ 1 \end{array} }\right] ;&\mathbf{C }=a^2 \left[ { \begin{array}{cc} 1&0 \end{array} }\right] \end{aligned}$$

where \(a=\frac{1}{T_1}\). Using these state matrices in the state Eqs. (3) and (4) the following expressions are obtained,

$$\begin{aligned} y(t)&=a^2x_1(t) \end{aligned}$$
(43)
$$\begin{aligned} {\dot{x}}_1(t)&=-ax_1(t)+x_2(t) \end{aligned}$$
(44)
$$\begin{aligned} {\dot{x}}_2(t)&=-ax_2(t)+v(t-\theta ) \end{aligned}$$
(45)

Using Eqs. (43) and (44) the state vector \(\mathbf{X }(t)\) in terms of the output can be expressed as,

$$\begin{aligned} \mathbf{X }(t)&= \left[ { \begin{array}{c} x_{1}(t) \\ x_{2}(t) \end{array} }\right] =\frac{1}{a^2} \left[ { \begin{array}{c} y(t) \\ {\dot{y}}(t)+ay(t) \end{array} }\right] \end{aligned}$$
(46)

Solving Eq. (4) for time range \(0\leqslant t \leqslant t_1\),

$$\begin{aligned} \mathbf{X }(t)&=\left[ { \begin{array}{c} x_{1}(t) \\ x_{2}(t) \end{array} }\right] \nonumber \\&=\frac{1}{a^2} \left[ { \begin{array}{c} {\dot{y}}(0)te^{-at}+v_1\Big (1-e^{-at}-ate^{-at}\Big ) \\ {\dot{y}}(0)e^{-at}+av_1\Big (1-e^{-at}\Big ) \end{array} }\right] \end{aligned}$$
(47)

Equating the values of \(\mathbf{X }(t)\) in Eq. (46) to that in Eq. (47) for \(t=t_{ep}\),

$$\begin{aligned}&\varepsilon -{\dot{y}}(0)t_{ep}e^{-at_{ep}}=v_1\Big (1-e^{-at}-ate^{-at}\Big ) \end{aligned}$$
(48)
$$\begin{aligned}&-a\varepsilon +{\dot{y}}(0)e^{-at_{ep}}-{\dot{y}}(t_{ep})=-av_1\Big (1-e^{-at_{ep}}\Big ) \end{aligned}$$
(49)

Dividing Eq. (48) by (49) and solving gives,

$$\begin{aligned}&a^2\varepsilon t_{ep}+{\dot{y}}(0)\Big (1-at_{ep}-e^{-at_{ep}}\Big )\nonumber \\&\quad ={\dot{y}}(t_{ep})\Big (e^{at_{ep}}-at_{ep}-1\Big ) \end{aligned}$$
(50)

The above Eq. (50) is same as the one in Eq. (29), which is derived by imparting limiting conditions on Eq. (14), found for all the non-critical cases. From Eq. (49) the equation for finding \(v_1\) can be derived as the following,

$$\begin{aligned} v_1=\dfrac{\varepsilon a+{\dot{y}}(t_{ep})-{\dot{y}}(0)e^{-at_{ep}}}{a\Big (1-e^{-at_{ep}}\Big )} \end{aligned}$$
(51)

Solving Eq. (4) for time range \(t_1\leqslant t \leqslant t_3\) ,

$$\begin{aligned}&\mathbf{X }(t)=\frac{1}{a^2} \left[ { \begin{array}{c} -{\dot{y}}(t_2)(t-t_2)e^{a(t_2-t)}-v_2\Big (1-e^{a(t_2-t)}-a(t-t_2)e^{a(t_2-t)}\Big ) \\ -{\dot{y}}(t_2)e^{-at}+av_2\Big (1-e^{a(t_2-t)}\Big ) \end{array} }\right] \end{aligned}$$
(52)

Equating \(x_2(t_{em})\) from Eq. (46) to that in Eq. (52) gives the value of \(v_2\) as the following,

$$\begin{aligned} v_2=\dfrac{a\varepsilon +{\dot{y}}(t_{em}) -{\dot{y}}(t_2)e^{a(t_2-t_{em})}}{a\Big (1-e^{a(t_2-t_{em})}\Big )} \end{aligned}$$
(53)

It is worthy to note that the expression for \(v_1\), \(v_2\) in Eqs. (40), (41) are the same as that in Eqs. (51), (53). Hence, the equations of various parameters for critically damped case can be derived from the general non-critical case by imparting the limiting condition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meher, T., Majhi, S. An improved relay feedback identification technique for Hammerstein model. Int. J. Dynam. Control 8, 952–962 (2020). https://doi.org/10.1007/s40435-020-00612-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-020-00612-3

Keywords

Navigation