Skip to main content

Advertisement

Log in

On the control of a reaction–diffusion system: a class of SIR distributed parameter systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, two types of distributed control functions, vaccine and treatment have been applied to a spatiotemporal SIR model with no-flux boundary conditions. The spatiotemporal SIR epidemic model is formulated from existing SIR epidemic model by including a diffusion term in his different compartments to study the impact of spatial heterogeneity of disease transmission in dense regions. Our main objective to find the optimal control pair that minimizes the number of infected individuals, the corresponding vaccination and treatment costs. The existence of the positive solution for the state system and the existence of a distributed optimal control pair are proved. Techniques of optimal control are used to characterize optimal control pair in terms of state and adjoint functions. The optimality system is solved numerically; the numerical results show that the control effect is effective if the treatment and vaccine strategies are used simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bailey N (1975) The mathematical theory of infectious diseases, 2nd edn. Hafner, New York

    MATH  Google Scholar 

  2. Kermack WO, McKendrick AG (1927) A contribution to the mathematical theory of epidemics. In: Proceedings of the royal society of London a: mathematical, physical and engineering sciences, The Royal Society, vol 115, pp 700–721

  3. Ji C, Jiang D, Shi N (2012) The behavior of an sir epidemic model with stochastic perturbation. Stoch Anal Appl 30(5):755–773

    Article  MathSciNet  MATH  Google Scholar 

  4. Mouaouine A, Boukhouima A, Hattaf K, Yousfi N (2018) A fractional order SIR epidemic model with nonlinear incidence rate. Adv Differ Equ 1:160

    Article  MathSciNet  MATH  Google Scholar 

  5. El-Saka HAA (2014) he fractional-order SIS epidemic model with variable population size. J Egypt Math Soc 20(1):50–54

    Article  MathSciNet  MATH  Google Scholar 

  6. Kuznetsov YA, Piccardi C (1994) Bifurcation analysis of periodic SEIR and SIR epidemic models. J Math Biol 32(2):109–121

    Article  MathSciNet  MATH  Google Scholar 

  7. McCluskey CC (2010) Complete global stability for an sir epidemic model with delay—distributed or discrete. Nonlinear Anal Real World Appl 11(1):55–59

    Article  MathSciNet  MATH  Google Scholar 

  8. Pathak S, Maiti A, Samanta GP (2010) Rich dynamics of an sir epidemic model. Nonlinear Anal Model Control 15(1):71–81

    MathSciNet  MATH  Google Scholar 

  9. Song M, Ma W (2006) Asymptotic properties of a revised sir epidemic model with density dependent birth rate and time delay. Dyn Contin Discrete Impulsive Syst Ser A 13(2):199

    MathSciNet  MATH  Google Scholar 

  10. Jiajia Y, Jiang D, Shi N (2009) Global stability of two-group sir model with random perturbation. J Math Anal Appl 360(1):235–244

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang F, Li Z, Zhang F (2008) Global stability of an sir epidemic model with constant infectious period. Appl Math Comput 199(1):285–291

    MathSciNet  MATH  Google Scholar 

  12. Kramer AM, Pulliam JT, Alexander LW, Park AW, Rohani P, Drake JM (2016) Spatial spread of the West Africa ebola epidemic. R Soc Open Sci 3(8):160294

    Article  Google Scholar 

  13. da Costa ACC, Codeço CT, Krainski ET, da Costa Gomes MF, Nobre AA (2018) Spatiotemporal diffusion of influenza a (h1n1): starting point and risk factors. PloS ONE 13(9):e0202832

    Article  Google Scholar 

  14. Wang X, Posny D, Wang J (2016) A reaction–convection–diffusion model for cholera spatial dynamics. Discrete Contin Dyn Syst Ser B 21:2785–2809

    Article  MathSciNet  MATH  Google Scholar 

  15. Chinviriyasit S, Chinviriyasit W (2010) Numerical modelling of an sir epidemic model with diffusion. Appl Math Comput 216(2):395–409

    MathSciNet  MATH  Google Scholar 

  16. Laaroussi AEA, Ghazzali R, Rachik M, Benrhila S (2019) Modeling the spatiotemporal transmission of ebola disease and optimal control: a regional approach. Int J Dyn Control 1–15

  17. Laaroussi AEA, Rachik M, Elhia M (2016) An optimal control problem for a spatiotemporal sir model. Int J Dyn Control 6(1):384–397

    Article  MathSciNet  Google Scholar 

  18. Samsuzzoha M, Singh M, Lucy D (2011) Numerical study of a diffusive epidemic model of influenza with variable transmission coefficient. Appl Math Model 35(12):5507–5523

    Article  MathSciNet  MATH  Google Scholar 

  19. McAsey M, Mou L, Han W (2012) Convergence of the forward–backward sweep method in optimal control. Comput Optim Appl 53(1):207–226

    Article  MathSciNet  MATH  Google Scholar 

  20. Yusuf TT, Benyah F (2012) Optimal control of vaccination and treatment for an sir epidemiological model. World J Model Simul 8(3):194–204

    Google Scholar 

  21. Klimenkova O (2016) Optimal control for virus spreading for an sir model, arXiv preprint arXiv:1612.08302

  22. Chen L, Sun J (2014) Optimal vaccination and treatment of an epidemic network model. Phys Lett A 378(41):3028–3036

    Article  MathSciNet  MATH  Google Scholar 

  23. Cui Q, Yang X, Zhang Q (2014) An NSFD scheme for a class of sir epidemic models with vaccination and treatment. J Differ Equ Appl 20(3):416–422

    Article  MathSciNet  MATH  Google Scholar 

  24. Zaman G, Kang YH, Cho G, Jung IH (2017) Optimal strategy of vaccination and treatment in an sir epidemic model. Math Comput Simul 136:63–77

    Article  MathSciNet  Google Scholar 

  25. Ge J, Kim KI, Lin Z, Zhu H (2015) A sis reaction–diffusion-advection model in a low-risk and high-risk domain. J Differ Equ 259(10):5486–5509

    Article  MathSciNet  MATH  Google Scholar 

  26. Laarabi H, Abta A, Hattaf K (2015) Optimal control of a delayed sirs epidemic model with vaccination and treatment. Acta Biotheor 63(2):87–97

    Article  Google Scholar 

  27. Vrabie Ioan I (2003) C0-semigroups and applications, volume 191 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam

  28. Smoller J (2012) Shock waves and reaction–diffusion equations, vol 258. Springer, Berlin

    MATH  Google Scholar 

  29. Brezis H, Ciarlet PG, Lions JL (1999) Analyse fonctionnelle: théorie et applications, vol 91. Dunod, Paris

    Google Scholar 

  30. Barbu V (2012) Mathematical methods in optimization of differential systems, vol 310. Springer, Berlin

    Google Scholar 

  31. Pazy A (2012) Semigroups of Linear Operators and Applications to Partial Differential Equations, vol 44. Springer, Berlin

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the members of the Editorial Board who were responsible of this paper, and the anonymous referees for their valuable comments and suggestions to improve the content of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil El Alami Laaroussi.

Appendix

Appendix

First recall a general existence result which we use in the sequel (Proposition 1.2, p. 175, [30]; see also [27, 31]). Consider the initial value problem

$$\begin{aligned} \left\{ \begin{array}{l} \dfrac{\partial y}{\partial t}=Ay\left( t\right) +g\left( t,y\left( t\right) \right) ,\qquad t\in \left[ 0,T\right] \\ y\left( 0\right) =y_{0} \end{array}\right. \end{aligned}$$
(36)

where A is a linear operator defined on a Banach space X, with the domain D(A) and \(g:[0,T]\times X\rightarrow X\) is a given function. If X is a Hilbert space endowed with the scalar product \((\cdot ,\cdot )\), then the linear operator A is called dissipative if \((Ay,y)\le 0,\,\left( \forall y\in D(A)\right) \).

Theorem 5

X be a real Banach space, \(A:D(A)\subseteq X\rightarrow X\) be the infinitesimal generator of a \(C_{0}-\) semigroup of linear contractions \({S(t),\,t\ge 0}\) on X, and \(g:[0,T]\times X\rightarrow X\) be a function measurable in t and Lipschitz continuous in \(x\in X\), uniformly with respect to \(t\in [0,T]\).

(i) If \(y_{0}\in X\), then problem (36) admits a unique mild solution, i.e. a function \(y\in C([0,T];X)\) which verifies the equality \(y(t)=S(t)y_{0}+\int _{0}^{t}S(t-s)g(s,y(s))ds, (\forall t\in [0,T])\).

(ii) If X is a Hilbert space, A is self-adjoint and dissipative on X and \(y_{0}\in D(A)\), then the mild solution is in fact a strong solution and \(y\in W^{1,2}(\left[ 0,T\right] ;X)\cap L^{2}(0,T;D(A))\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazzali, R., Laaroussi, A.E., EL Bhih, A. et al. On the control of a reaction–diffusion system: a class of SIR distributed parameter systems. Int. J. Dynam. Control 7, 1021–1034 (2019). https://doi.org/10.1007/s40435-019-00553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-019-00553-6

Keywords

Navigation