Skip to main content
Log in

T–S fuzzy observed based design and synchronization of chaotic and hyper-chaotic dynamical systems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, we present the Takagi–Sugeno (T–S) fuzzy observed based design and synchronization of chaotic and hyper chaotic dynamical systems. Using T–S fuzzy observed based design, the fuzzy logic controllers for chaotic synchronization are constructed via linear matrix inequality (LMI). Lyapunov exponents of 3D and 4D Chen systems have been calculated. This represents the chaoticity and hyper chaoticity of Chen systems. Analytical and computational studies of chaotic and hyper chaotic Chen systems have been performed by using LMI toolbox. The qualitative and simulated results show the validity and the performance of the proposed observer in an excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Carroll TL, Pecora LM (1991) Synchronization chaotic circuits. IEEE Trans CAS I(38):435–446

    Google Scholar 

  2. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang SM, Li MC, Lin WW (2009) Asymptotic synchronization of modified logistic hyper-chaotic system and its application. Nonlinear Anal Real World Appl 10:869

    Article  MathSciNet  MATH  Google Scholar 

  4. Ott E, Grebogi C, Yorke J (1990) Controlling chaos. Phys Rev Lett 64:1196–1199

    Article  MathSciNet  MATH  Google Scholar 

  5. Wu Z, Shi P, Chu J (2013) Sampled-data synchronization of chaotic Lur’e systems with time delays. IEEE Trans Neural Netw Learn Syst 24(3):410–421

    Article  Google Scholar 

  6. Wang YW, Guan ZH, Wang HO (2005) Impulsive synchronization for Takagi–Sugeno fuzzy model and its application to continuous chaoticsystem. Phys Lett A 339:325–332

    Article  MATH  Google Scholar 

  7. Pai MC (2014) Global synchronization of uncertain chaotic systems via-discrete-time sliding mode control. Appl Math Comput 227(15):663–671

    MathSciNet  MATH  Google Scholar 

  8. Xiao X, Zhou L, Zhang Z (2014) Synchronization of chaotic Lur’e system with quantized sampled-data controller. Commun Nonlinear Sci Numer Simul 19:2039–2047

    Article  MathSciNet  Google Scholar 

  9. Zadeh LA (1988) Fuzzy logic. IEEE Comput 21:83

    Article  Google Scholar 

  10. Tanaka K, Wang HO (2001) Fuzzy control system design and analysis: a linear matrix inequality approach. Wiley, New York

    Book  Google Scholar 

  11. Lian KY, Chiu CS, Chiang TS, Liu P (2001) LMI-based fuzzy chaotic synchronization and communication. IEEE Trans Fuzzy Syst 9:539–553

    Article  Google Scholar 

  12. Ting C-S (2005) An adaptive fuzzy observer-based approach for chaotic synchronization. Int J Approx Reason 39:97–114

    Article  MathSciNet  MATH  Google Scholar 

  13. Lin JS, Liao TL, Yan JJ, Yau HT (2005) Synchronization of unidirectional coupled chaotic systems with unknown channel time-delay: adaptive robust observer-based approach. Chaos Solitons Fractals 26(3):971–978

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang J, Chen Y, Zhu F (2014) Singular reduced-order observer-based synchronization for uncertain chaotic systems subject to channel disturbance and chaos-based secure communication. Appl Math Comput 229:227–238

    MATH  Google Scholar 

  15. Hyun C-H, Kim J-H, Park M (2006) Adaptive fuzzy observer based synchronization design and secure communications of chaotic systems. Chaos Solitons Fractals 27:930–940

    Article  MathSciNet  MATH  Google Scholar 

  16. Xingyuan W, Juan M (2008) Observer-based adaptive fuzzy synchronization for hyperchaotic systems. CHAOS 18:033102

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar.

Appendix A:

Appendix A:

Proposition

: The continuous-time linear system in the form of

$$\begin{aligned} \dot{x}(t)= A x(t) \end{aligned}$$
(22)

with \(A\in R^{n\times n}\) is Hurwitz stable if and only if there exists a matrix \(P\in R^{n\times n}\), such that

$$\begin{aligned} \begin{bmatrix} P>0 \\ A^{T}P + PA <0. \end{bmatrix} \end{aligned}$$
(23)

Theorem A.1

[10]: The equilibrium of the augmented system described by  (10) is globally asymptotically stable if there exists a common positive definite matrix P such that

$$\begin{aligned}&G_{ii}^{T} P + P G_{ii} < 0, \end{aligned}$$
(24)
$$\begin{aligned}&\left( \frac{G_{ij} + G_{ji}}{2}\right) ^{T} P + P \left( \frac{G_{ij} + G_{ji}}{2}\right) \le 0,\nonumber \\&i < j \quad \hbox { such}\hbox { that }\quad h_{i}\cap h_{j}\ne \phi . \end{aligned}$$
(25)

Theorem A.2

[10]: If the number of the rules that fire for all t is less than or equal to s, where \(1 < s\le r\), then

$$\begin{aligned} \sum _{i=1} ^{r} h_{i}^{2}(s(t)) - \frac{1}{s-1} \sum _{i=1} ^{r} \sum _{i<j} ^{r} 2 h_{i} (s(t))h_{j} (s(t)) \ge 0 \end{aligned}$$
(26)

where \(\sum _{i=1}^{r} h_{i}(s(t))=1 , \quad h_{i} (s(t)) \ge 0\),    for all i.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Kumar, S. T–S fuzzy observed based design and synchronization of chaotic and hyper-chaotic dynamical systems. Int. J. Dynam. Control 6, 1409–1419 (2018). https://doi.org/10.1007/s40435-017-0358-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0358-y

Keywords

Navigation