Skip to main content
Log in

Nonlinear H-infinity control for underactuated systems: the Furuta pendulum example

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

The article applies nonlinear optimal (H-infinity) control to underactuated robotic systems using as a case study Furuta’s pendulum. The pendulum’s dynamic model is first transformed to an equivalent form after applying partial feedback linearization. The later description of the pendulum’s dynamics undergoes approximate linearization which takes place round a temporary operating point (equilibrium) recomputed at each iteration of the control algorithm. The linearization makes use of Taylor series expansion of the state-space model of the system and needs computation of the associated Jacobian matrices. For the approximately linearized model of the pendulum an H-infinity feedback controller is developed. The controller’s gain is computed through the repetitive solution of an algebraic Riccati equation which is also performed at each step of the control method. The stability analysis is based on Lyapunov’s method. First it is shown that the control loop satisfies the H-infinity tracking performance condition. Next, under moderate conditions it is also shown that the global asymptotic stability of the control loop can be assured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shiriaev A, Freidovich L, Robertsson A, Johansson R, Sandberg A (2007) Virtual-holonomic-constraints-based design of stable oscillations of Furuta pendulum: theory and experiments. IEEE Trans Robot 23(4):827–832

    Article  Google Scholar 

  2. Freidovich L, Shiriaev A, Gordillo F, Gmez-Estern F, Aracil J (2009) Partial-energy-shaping control for orbital stabilization of high-frequency oscillations of the furuta pendulum. IEEE Trans Control Syst Technol 17(4):853–858

    Article  Google Scholar 

  3. Morena-Valenzuela J, Aguilar-Avelar C, Puga-Guzman S, Santibanex V (2016) Adaptive neural network control for the trajecotry tracking of the Furuta pendulum. IEEE Trans Cybern 46:1–14

    Article  Google Scholar 

  4. Park MS, Chwa D (2009) Swing-up stabilization control of inverted pendulum systems with coupled sliding-mode contorl method. IEEE Trans Ind Electron 56(9):3541–3555

    Article  Google Scholar 

  5. Siriaev A, Perman JW, Canudas-de-Wit C (2005) Constructuve tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach. IEEE Trans Autom Control 50(8):1166–1176

    Google Scholar 

  6. Liu S (2014) Stable synchronization of two Furuta pendulums network based on the model of controlled Lagrangian. In: Proceedings of the 33rd Chinese control conference, Niajing, China

  7. Tanaka S, Xiu X, Yamasaki T (2011) New results on energy-based swing-up control for rotational pendulum. In: Proceedings of the 18th IFAC world congress, Milan, Italy

  8. Mathew NJ, Rao KK, Sivakumaran N (2013) Swing-up and stabilization control of a rotary inverted pendulum. In: 10th IFAC symposium on dynamics and control of process systems, Mumbai, India

  9. Zhang J, Zhang Y (2011) Optimal linear modelling and its applications on swing-up and stabilization control for rotary inverted pendulum. In: Proceedings of the 30th Chinese control conference, Yantai, China

  10. Stamens ON, Aamo OM, Kaasa GO (2011) A constructive speed observer design for optimal Euler–Lagrange systems. Automatica 47:2233–2238

    Article  MATH  Google Scholar 

  11. Aracil J, Acosta J, Gordillo E (2013) A nonlinear hybrid controller for swinging-up and stabilizing the Furuta pendulum. Control Eng Pract 21:989–993

    Article  Google Scholar 

  12. Fabbri T, Fenucci D, Falasca S, Gamba M, Bicchi A (2013) Packet-based dynamic control of a Furuta pendulum over Ethernet. In: IEEE MED 2013, 21st Mediterranean conference on control and automation, Crete, Greece

  13. La Hera P, Freidovich L, Shiriaev A, Mettin U (2009) New approach for swinging-up the Furuta pendulum: theory and experiments. Mechatronics 19:1240–1250

    Article  Google Scholar 

  14. Chang DE (2010) Stabilizability of controlled Lagrangian systems of two degrees of freedom and one degree of under-actuation by the energy-shaping method. IEEE Trans Autom Control 55(8):1888–1893

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhao X, Zhang Z, Huang J (2016) Energy-based swing-up control of rotary parallel inverted pendulum. In: IEEE WCICA 2016, Proceedings of 12th world congress on intelligent control and automation, Guilin, China

  16. Aguilar-Ibanez C, Sira-Ramirez H (2002) Control of the Furuta pendulum based on a linear differential flatness approach. In: IEEE ACC 2002, Proceedings of the American control conference, Anchorage, Alaska

  17. Ramirez-Neria M, Sira-Ramirez H, Garrido-Moctezuma R, Luviano-Suarez A (2014) On the linear active disturbance rejection control of the Furuta pendulum. In: IEEE ACC 2014, American control conference, Portland, Oregon, USA

  18. Aguilar-Avelar C, Moreno-Valenzuela J (2015) A composite controller for trajectory tracking applied to the Furuta pendulum. ISA Trans 57:286–294

    Article  Google Scholar 

  19. Aguilar-Avelar C, Moreno-Valenzuela J (2014) A feedback linearization controller for trajectory tracking of the Furuta pendulum. In: 2014 American control conference, Portland, Oregon, USA

  20. Ramirez-Neria M, Sira-Ramirez H, Garrido-Moctezuma R, Luviano-Juarez A (2014) Linear active disturbance rejection control of underactuated systems: the case of the Furuta pendulum. ISA Trans 53:920–928

    Article  Google Scholar 

  21. Rigatos G, Siano P (2015) A new nonlinear H-infinity feedback control approach to the problem of autonomous robot navigation. J Intell Ind Syst 1(3):179–186

    Article  Google Scholar 

  22. Rigatos G, Siano P, Wira P, Profumo F (2015) Nonlinear H-infinity feedback control for asynchronous motors of electric trains. J Intell Ind Syst 1(2):85–98

    Article  Google Scholar 

  23. Rigatos GG, Tzafestas SG (2007) Extended Kalman filtering for fuzzy modelling and multi-sensor fusion. Math Comput Model Dyn Syst 13:251–266

    Article  MathSciNet  MATH  Google Scholar 

  24. Basseville M, Nikiforov I (1993) Detection of abrupt changes: theory and applications. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  25. Toussaint GJ, Basar T, Bullo F (2000) \(H_{\infty }\) optimal tracking control techniques for nonlinear underactuated systems. In: Proceedings of IEEE CDC 2000, 39th IEEE conference on decision and control, Sydney, Australia

  26. Rigatos G, Zhang Q (2009) Fuzzy model validation using the local statistical approach. Fuzzy Sets Syst 60(7):882–904

    Article  MathSciNet  MATH  Google Scholar 

  27. Rigatos GG (2011) Modelling and control for intelligent industrial systems: adaptive algorithms in robotcs and industrial engineering. Springer, New York

    Book  MATH  Google Scholar 

  28. Rigatos G (2013) Advanced models of neural networks: nonlinear dynamics and stochasticity in biological neurons. Springer, New York

    MATH  Google Scholar 

  29. Rigatos G (2015) Nonlinear control and filtering using differential flatness approaches: applications to electromechanicsl systems. Springer, New York

    Book  MATH  Google Scholar 

  30. Rigatos G (2017) Intelligent renewable energy systems: modelling and control. Springer, New York

    Google Scholar 

  31. Rigatos G (2017) State-space appproaches for modelling and control in financial engineering: systems theory and machine learning methods. Springer, New York

    Book  Google Scholar 

  32. Gibbs BP (2011) Advanced Kalman filtering, least squares and modelling: a practical handbook. Wiley, New York

    Book  Google Scholar 

  33. Simon D (2006) A game theory approach to constrained minimax state estimation. IEEE Trans Signal Process 54(2):405–412

    Article  MATH  Google Scholar 

  34. Hernandez-Guzman VM, Antonio-Cruz M, Ortigoza RS (2016) Linear state feedback regulation of the Furuta pendulum: design based on differential flatness and root locus. IEEE Access 4:8721–8736

    Article  Google Scholar 

  35. Park MD, Chwwa D (2009) Swing-up and stabilization control of inverted pendulum systems via coupled sliding-mode control method. IEEE Trans Ind Electron 56(9):3541–3555

    Article  Google Scholar 

  36. Suzuki S, Furuta K, Pan Y (2003) State-dependent sliding vector VS control and application to swing-up control of pendulum. In: Proceedings of the 42nd IEEE conference on decision and control, Maui, Hawai, USA

  37. Man WS, Lin JS (2010) Nonlinear control design for a class of underactuated systems. In: 2010 IEEE internatinal conference on control applications, proceedings of the 2010 IEEE multi-conference on systems and control, Yokohama, Japan

  38. Salgado I, Kamal S, Bandyopadhyay B, Chairez I, Fridman L (2016) Control of discrete time systems based on recurrent super-twisting-like algorithm. ISA Trans 64:47–55

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Unit of Industrial Automation / Industrial Systems Institute (Grant No. Ref. 5352 / Nonlinear control and filtering).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rigatos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigatos, G., Siano, P., Abbaszadeh, M. et al. Nonlinear H-infinity control for underactuated systems: the Furuta pendulum example. Int. J. Dynam. Control 6, 835–847 (2018). https://doi.org/10.1007/s40435-017-0348-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-017-0348-0

Keywords

Navigation