Skip to main content

Open-Loop Control of Underactuated Mechanical Systems Using Servo-Constraints: Analysis and Some Examples

  • Chapter
  • First Online:
Applications of Differential-Algebraic Equations: Examples and Benchmarks

Part of the book series: Differential-Algebraic Equations Forum ((DAEF))

Abstract

A classical trajectory tracking control approach combines feedforward control with a feedback loop. Since both parts can be designed independently, this is called a two degree of freedom control structure. Feedforward control is ideally an inverse model of the system. In case of underactuated mechanical systems the inverse model often cannot be derived analytically, or the derivation cannot follow a systematic approach. Then, the numerical approach based on servo-constraints has shown to be effective. In this approach, the equations of motion are appended by algebraic equations constraining the output to follow a specified output trajectory, representing the servo-constraints. The arising differential-algebraic equations (DAEs) are solved for the desired open-loop control input. An additional feedback loop stabilizes the system around the specified trajectories. This contribution reviews the use of servo-constraints in mechanical open-loop control problems. Since the arising set of DAEs is usually of higher index, index reduction and analysis methods are reviewed for flat as well as non-flat systems. Some typical examples are given and numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altmann, R., Heiland, J.: Simulation of multibody systems with servo constraints through optimal control. Multibody Syst. Dyn. 40, 1–24 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Altmann, R., Betsch, P., Yang, Y.: Index reduction by minimal extension for the inverse dynamics simulation of cranes. Multibody Syst. Dyn. 36(3), 295–321 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bajodah, A.H., Hodges, D.H., Chen, Y.H.: Inverse dynamics of servo-constraints based on the generalized inverse. Nonlinear Dyn. 39(1), 179–196 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bastos, G., Seifried, R., Brüls, O.: Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach. Multibody Syst. Dyn. 30(3), 359–376 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berger, T.: The zero dynamics form for nonlinear differential-algebraic systems. IEEE Trans. Autom. Control 62(8), 4131–4137 (2017). https://doi.org/10.1109/TAC.2016.2620561

    Article  MathSciNet  MATH  Google Scholar 

  6. Betsch, P., Quasem, M., Uhlar, S.: Numerical integration of discrete mechanical systems with mixed holonomic and control constraints. J. Mech. Sci. Technol. 23(4), 1012–1018 (2009)

    Article  MATH  Google Scholar 

  7. Betsch, P., Altmann, R., Yang, Y.: Numerical integration of underactuated mechanical systems subjected to mixed holonomic and servo constraints. Multibody Dyn. 1–18 (2016)

    Google Scholar 

  8. Blajer, W.: Index of differential-algebraic equations governing the dynamics of constrained mechanical systems. Appl. Math. Model. 16(2), 70–77 (1992)

    Article  MATH  Google Scholar 

  9. Blajer, W., Kolodziejczyk, K.: A geometric approach to solving problems of control constraints: theory and a DAE framework. Multibody Syst. Dyn. 11(4), 343–364 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blajer, W., Kolodziejczyk, K.: Motion planning and control of gantry cranes in cluttered work environment. IET Control Theory Appl. 1(5), 1370–1379 (2007)

    Article  Google Scholar 

  11. Blajer, W., Kołodziejczyk, K.: Improved DAE formulation for inverse dynamics simulation of cranes. Multibody Syst. Dyn. 25(2), 131–143 (2011)

    Article  Google Scholar 

  12. Brüls, O., Bastos, G.J., Seifried, R.: A stable inversion method for feedforward control of constrained flexible multibody systems. J. Comput. Nonlinear Dyn. 9(1), 011014 (2013)

    Article  Google Scholar 

  13. Campbell, S.L.: High-index differential algebraic equations. Mech. Struct. Mach. 23(2), 199–222 (1995)

    Article  MathSciNet  Google Scholar 

  14. Campbell, S.L., Gear, C.W.: The index of general nonlinear DAEs. Numer. Math. 72(2), 173–196 (1995). https://doi.org/10.1007/s002110050165

    Article  MathSciNet  MATH  Google Scholar 

  15. Devasia, S., Chen, D., Paden, B.: Nonlinear inversion-based output tracking. IEEE Trans. Autom. Control 41(7), 930–942 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Estévez Schwarz, D., Lamour, R.: Diagnosis of singular points of properly stated daes using automatic differentiation. Numer. Algorithms 70(4), 777–805 (2015). https://doi.org/10.1007/s11075-015-9973-x

    Article  MathSciNet  MATH  Google Scholar 

  17. Fliess, M., Lévine, J., Martin, P., Rouchon, P.: Flatness and defect of non-linear systems: introductory theory and examples. Int. J. Control 61(6), 1327–1361 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fumagalli, A., Masarati, P., Morandini, M., Mantegazza, P.: Control constraint realization for multibody systems. J. Comput. Nonlinear Dyn. 6, 011002 (2010)

    Article  Google Scholar 

  19. Hairer, E.: Stiff and Differential-Algebraic Problems. Springer, Berlin u.a. (2002)

    Google Scholar 

  20. Hairer, E.: Solving Ordinary Differential Equations: Nonstiff Problems, Second Revised edn., 3 printing edn. Springer, Berlin u.a. (2008)

    Google Scholar 

  21. Ilchmann, A., Ryan, E.P., Sangwin, C.J.: Tracking with prescribed transient behaviour. ESAIM Control Optim. Calc. Var. 7, 471–493 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, Berlin [u.a.] (1996)

    Google Scholar 

  23. Masarati, P., Morandini, M., Fumagalli, A.: Control constraint of underactuated aerospace systems. J. Comput. Nonlinear Dyn. 9(2), 021014 (2014)

    Article  Google Scholar 

  24. Otto, S., Seifried, R.: Real-time trajectory control of an overhead crane using servo-constraints. Multibody Syst. Dyn. 1–17 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Petzold, L., Lötstedt, P.: Numerical solution of nonlinear differential equations with algebraic constraints ii: practical implications. SIAM J. Sci. Stat. Comput. 7(3), 720–733 (1986). https://doi.org/10.1137/0907049

    Article  MathSciNet  MATH  Google Scholar 

  26. Sastry, S.: Nonlinear Systems Analysis, Stability, and Control. Springer, New York [u.a.] (1999)

    Google Scholar 

  27. Seifried, R.: Two approaches for feedforward control and optimal design of underactuated multibody systems. Multibody Syst. Dyn. 27(1), 75–93 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Seifried, R., Blajer, W.: Analysis of servo-constraint problems for underactuated multibody systems. Mech. Sci. 4(1), 113–129 (2013)

    Article  Google Scholar 

  29. Siciliano, B., Oriolo, G., Sciavicco, L., Villani, L.: Robotics Modelling, Planning and Control. Springer, London (2009)

    Book  Google Scholar 

  30. Skogestad, S.: Multivariable Feedback Control: Analysis and Design, reprinted edn. Wiley, Chichester u.a. (2004)

    MATH  Google Scholar 

  31. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall, Englewood Cliffs (1991)

    Google Scholar 

  32. Svaricek, F.: Nulldynamik linearer und nichtlinearer Systeme: Definition, Eigenschaften und Anwendungen. Automatisierungstechnik 54(7), 310–322 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svenja Otto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Otto, S., Seifried, R. (2018). Open-Loop Control of Underactuated Mechanical Systems Using Servo-Constraints: Analysis and Some Examples. In: Campbell, S., Ilchmann, A., Mehrmann, V., Reis, T. (eds) Applications of Differential-Algebraic Equations: Examples and Benchmarks. Differential-Algebraic Equations Forum. Springer, Cham. https://doi.org/10.1007/11221_2018_4

Download citation

Publish with us

Policies and ethics