Skip to main content
Log in

Modelling and control of nonlinear resonating processes: part I—system identification using orthogonal basis function

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Resonating systems show oscillatory characteristics. System identification of resonating systems and design of their model based control strategy always draw special attention. This work presents a Wiener type system identification technique for nonlinear resonating systems. Orthogonal basis function (henceforth termed as OBF) is employed to capture the linear dynamic part of the Wiener structure while the static nonlinear mapping is described by two means, viz., wavelet decomposition and least squares support vector machine. Use of OBF leads to a parsimonious nature in the resulting nonlinear model. Two types of OBFs have been used in this work viz. Laguerre filter and Kautz filter. The Kautz filter has capability of modelling systems with complex conjugate poles. A case study has been performed with continuous stirred tank reactor (henceforth referred as CSTR) which is a reasonably nonlinear resonating systems. Degree of nonlinearity as well as resonance increases with series-connected CSTR. Simulations are carried out using \(\hbox {MATLAB}^\circledR \) software in order to evaluate the performances of various Wiener structures, and identify the OBF–Wiener model best suited for designing a model based controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Henson MA, Seborg DE (1990) Input–output linearization of general nonlinear processes. AIChE J 36(11):1753–1757

    Article  Google Scholar 

  2. Prakash J, Srinivasan K (2009) Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor. ISA Trans 48(3):273–282

    Article  Google Scholar 

  3. Billings SA, Wei HL (2005) The wavelet-NARMAX representation: a hybrid model structure combining polynomial models with multiresolution wavelet decompositions. Int J Syst Sci 36(3):137–152

    Article  MATH  MathSciNet  Google Scholar 

  4. Glass JW (1999) NARMAX modeling and robust control of internal combustion engines. Int J Control 72(4):289–304

    Article  MATH  Google Scholar 

  5. Patwardhan RS, Lakshminarayanan S, Shah SL (1998) Constrained nonlinear MPC using Hammerstein and Wiener models: PLS framework. AIChE J 44(7):1611–1622

    Article  Google Scholar 

  6. Aadaleesan P, Miglan N, Sharma R, Saha P (2008) Nonlinear system identification using Wiener type Laguerre-wavelet network model. Chem Eng Sci 63(15):3932–3941

    Article  Google Scholar 

  7. Alci M, Asyali MH (2009) Nonlinear system identification via Laguerre network based fuzzy systems. Fuzzy Sets Syst 160(24):3518–3529

    Article  MATH  MathSciNet  Google Scholar 

  8. Mahmoodi S, Poshtan J, Jahed-Motlagh MR, Montazeri A (2009) Nonlinear model predictive control of a pH neutralization process based on Wiener–Laguerre model. Chem Eng J 146(3):328–337

    Article  Google Scholar 

  9. Saha P, Krishnan SH, Rao VSR, Patwardhan SC (2004) Modeling and predictive control of MIMO nonlinear systems using Wiener–Laguerre models. Chem Eng Commun 191(8):1083–1119

    Article  Google Scholar 

  10. Wahlberg B (1991) System identification using Laguerre models. IEEE Trans Autom Control 36(5):551–562

    Article  MATH  MathSciNet  Google Scholar 

  11. Wang QC, Zhang JZ (2011) Wiener model identification and nonlinear model predictive control of a pH neutralization process based on Laguerre filters and least squares support vector machines. J Zhejiang Univ Sci C 12(1):25–35

    Article  Google Scholar 

  12. Kautz WH (1954) Transient synthesis in the time domain. Trans IRE Prof Group Circuit Theory CT–1(3):29–39

    Article  Google Scholar 

  13. Misra S, Reddy R, Saha P (2016) Model predictive control of resonant systems using Kautz model. Int J Autom Comput 13(5):501–515

    Article  Google Scholar 

  14. da Rosa A, Campello R, Amaral W (2009) Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions. IEEE Trans Autom Control 54(12):2757–2772

    Article  MATH  MathSciNet  Google Scholar 

  15. Zhang Q (1997) Using wavelet network in nonparametric estimation. IEEE Trans Neural Netw 8(2):227–236

    Article  Google Scholar 

  16. Zhang Q, Benveniste A (1992) Wavelet networks. IEEE Trans Neural Netw 3(6):889–898

    Article  Google Scholar 

  17. Vapnik VN (1998) Statistical learning theory, 1st edn. Wiley, New York

    MATH  Google Scholar 

  18. Suykens J, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  MATH  Google Scholar 

  19. Goethals I, Pelckmans K, Suykens JA, Moor BD (2005) Identification of MIMO Hammerstein models using least squares support vector machines. Automatica 41(7):1263–1272

    Article  MATH  MathSciNet  Google Scholar 

  20. Totterman S, Toivonen HT (2009) Support vector method for identification of Wiener models. J Process Control 19(7):1174–1181

    Article  Google Scholar 

  21. Wahlberg B (1991) Identification of resonant systems using Kautz filters. In: Proceedings of the 30th IEEE conference on decision and control, vol 2, pp 2005–2010

  22. Daubechies I (1992) Ten lectures on wavelets. Society of Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  23. Falck T, Dreesen P, Brabanter KD, Pelckmans K, Moor BD, Suykens JA (2012) Least-squares support vector machines for the identification of Wiener–Hammerstein systems. Control Eng Pract 20(11):1165–1174

    Article  Google Scholar 

  24. Huang Y, Lou H, Gong J, Edgar T (2000) Fuzzy model predictive control. IEEE Trans Fuzzy Syst 8(6):665–678

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabirkumar Saha.

Appendix: Detailed derivation of Kautz representation

Appendix: Detailed derivation of Kautz representation

Using Theorem 1 the state space Kautz model given in Eqs. (8) and (9) can be derived in the following state space form (q is shift operator).

$$\begin{aligned} \varphi _{1}(k)&=\Psi _{1}( q) u(k) \nonumber \\&=C_{1}^{( 1) }\left( 1-a_{1}^{( 1) }q\right) \Gamma ^{( 1) }( q) u(k) \nonumber \\&=C_{1}^{( 1) }\left( 1-a_{1}^{( 1) }q\right) \dfrac{1}{(q-\beta _{1}) \left( q-\beta _{1}^{*}\right) }u(k) \nonumber \\&=C_{1}^{( 1) }\left( q^{-1}-a_{1}^{( 1) }\right) \dfrac{q}{q^{2}+h_{1}^{( 1) }q+h_{2}^{(1) }}u(k) \end{aligned}$$
(70)

where

$$\begin{aligned} h_{1}^{( 1) }&=-\left( \beta _{1}+\beta _{1}^{*}\right) \end{aligned}$$
(71)
$$\begin{aligned} h_{2}^{( 1) }&=\beta _{1}\beta _{1}^{*} \end{aligned}$$
(72)

Define the following states

$$\begin{aligned} x_{1}(k)&=\dfrac{q}{q^{2}+h_{1}^{( 1) } q+h_{2}^{( 1) }}u(k) \end{aligned}$$
(73)
$$\begin{aligned} x_{2}(k)&=x_{1}( k-1) \end{aligned}$$
(74)

Using Eqs. (73) and (74) in Eq. (70) one obtains

$$\begin{aligned} \varphi _{1}(k) =C_{1}^{( 1) }\left[ x_{2}( k) -a_{1}^{( 1) }x_{1}(k) \right] \end{aligned}$$
(75)

Similarly

$$\begin{aligned} \varphi _{2}(k)&=\Psi _{2}\left( q\right) u(k) \nonumber \\&=C_{2}^{\left( 1\right) }\left( 1-a_{2}^{\left( 1\right) }q\right) \Gamma ^{\left( 1\right) }\left( q\right) u(k) \nonumber \\&=\cdots =C_{2}^{( 1) }\left[ x_{2}(k) -a_{2}^{\left( 1\right) }x_{1}(k) \right] \end{aligned}$$
(76)

Further

$$\begin{aligned} \varphi _{3}(k)&=\Psi _{3}\left( q\right) u(k)\nonumber \\&=C_{1}^{\left( 2\right) }\left( 1-a_{1}^{\left( 2\right) }q\right) \Gamma ^{\left( 2\right) }\left( q\right) u(k) \nonumber \\&=C_{1}^{\left( 2\right) }\left( 1-a_{1}^{\left( 2\right) }q\right) \dfrac{\left( 1-\beta _{1}q\right) \left( 1-\beta _{1}^{*}q\right) u(k) }{\left( q-\beta _{2}\right) \left( q-\beta _{2}^{*}\right) \left( q-\beta _{1}\right) \left( q-\beta _{1}^{*}\right) }\nonumber \\&=C_{1}^{\left( 2\right) }\left( q^{-1}-a_{1}^{\left( 2\right) }\right) \nonumber \\&\quad \times \left( \dfrac{h_{2}^{\left( 1\right) }q^{2}+h_{1}^{\left( 1\right) }q+1}{q^{2}+h_{1}^{\left( 2\right) }q+h_{2}^{\left( 2\right) }}\right) \left( \dfrac{q}{q^{2}+h_{1}^{\left( 1\right) }q+h_{2}^{\left( 1\right) }}\right) u(k) \nonumber \\&=C_{1}^{\left( 2\right) }\left( q^{-1}-a_{1}^{\left( 2\right) }\right) \dfrac{h_{2}^{\left( 1\right) }q^{2}+h_{1}^{\left( 1\right) }q+1}{q^{2}+h_{1}^{\left( 2\right) }q+h_{2}^{\left( 2\right) }} x_{1}(k) \end{aligned}$$
(77)

where

$$\begin{aligned} h_{1}^{( 2) }&=-\left( \beta _{2}+\beta _{2}^{*}\right) \end{aligned}$$
(78)
$$\begin{aligned} h_{2}^{( 2) }&=\beta _{2}\beta _{2}^{*} \end{aligned}$$
(79)

Define the following states

$$\begin{aligned} x_{3}(k)&=\dfrac{h_{2}^{(1) }q^{2} +h_{1}^{( 1) }q+1}{q^{2}+h_{1}^{(2) } q+h_{2}^{(2) }}\times x_{1}(k) \end{aligned}$$
(80)
$$\begin{aligned} x_{4}(k)&=x_{3}( k-1) \end{aligned}$$
(81)

Using Eqs. (80) and (81) in Eq. (77), one obtains the regressors, similar to Eqs. (75) and (76) as

$$\begin{aligned} \varphi _{3}(k)&=C_{1}^{(2) }\left[ x_{4}(k) -a_{1}^{(2) }x_{3}(k) \right] \end{aligned}$$
(82)
$$\begin{aligned} \varphi _{4}(k)&=C_{2}^{(2) }\left[ x_{4}(k) -a_{2}^{(2) }x_{3}(k) \right] \end{aligned}$$
(83)

The derivation of regressors can further be continued and a generalized expression can be given as in Eqs. (11)–(16).

Further, upon applying inverse transformation on the Eq. (73) and thereupon using Eq. (74), following discrete time domain state space expression can be obtained

$$\begin{aligned} x_{1}( k+1)&=-h_{1}^{(1)}x_{1}(k) -h_{2} ^{(1)}x_{1}\left( k-1\right) +u(k)\nonumber \\&=-h_{1}^{(1)}x_{1}(k) -h_{2}^{(1)}x_{2}(k) +u(k) \end{aligned}$$
(84)
$$\begin{aligned} x_{2}\left( k+1\right)&=x_{1}(k) \end{aligned}$$
(85)

Similarly, upon applying inverse transformation the above Eq. (80) and thereupon using Eqs. (81) and (84)

$$\begin{aligned} x_{3}\left( k+1\right)&=-h_{1}^{\left( 2\right) }x_{3}\left( k\right) -h_{2}^{\left( 2\right) }x_{3}\left( k-1\right) +h_{2} ^{(1)}x_{1}\left( k+1\right) \nonumber \\&\quad +h_{1}^{(1)}x_{1}(k) +x_{1}\left( k-1\right) \nonumber \\&=\cdots =h_{1}^{(1)}\left( 1-h_{2}^{(1)}\right) x_{1}(k) +\left\{ 1-\left( h_{2}^{(1)}\right) ^{2}\right\} x_{2}(k) \nonumber \\&-h_{1}^{\left( 2\right) }x_{3}(k) -h_{2}^{(2)} x_{4}(k)+h_{2}^{(1)}u(k) \end{aligned}$$
(86)
$$\begin{aligned} x_{4}\left( k+1\right)&=x_{3}(k) \end{aligned}$$
(87)

Similar to Eqs. (80) and (81),

$$\begin{aligned} x_{5}(k)&=\dfrac{h_{2}^{(2)}q^{2}+h_{1}^{(2)}q+1}{q^{2}+h_{1}^{\left( 3\right) }q+h_{2}^{\left( 3\right) }}\times x_{3}(k) \end{aligned}$$
(88)
$$\begin{aligned} x_{6}(k)&=x_{5}\left( k-1\right) \end{aligned}$$
(89)

and applying inverse transformation on Eq. (88) and thereupon using Eqs. (89) and (86)

$$\begin{aligned} x_{5}\left( k+1\right)&=h_{1}^{\left( 1\right) }h_{2}^{(2)}\left( 1-h_{2}^{\left( 1\right) }\right) x_{1}(k) \nonumber \\&\quad + h_{2}^{(2)}\left\{ 1-\left( h_{2}^{(1)}\right) ^{2}\right\} x_{2}(k)+h_{1}^{(2)}\left( 1-h_{2}^{(2)}\right) x_{3}(k) \nonumber \\&\quad +\left\{ 1-\left( h_{2}^{(2)}\right) ^{2}\right\} x_{4}(k)-h_{1} ^{\left( 3\right) }x_{5}(k) -h_{2}^{\left( 3\right) } x_{6}(k) \nonumber \\&\quad +h_{2}^{(2)}h_{2}^{(1)}u(k) \end{aligned}$$
(90)
$$\begin{aligned} x_{6}\left( k+1\right)&=x_{5}(k) \end{aligned}$$
(91)

Likewise,

$$\begin{aligned} x_{7}\left( k+1\right)&=\left[ \begin{array}[c]{c} h_{1}^{\left( 1\right) }h_{2}^{(2)}h_{2}^{(3)}\left( 1-h_{2}^{\left( 1\right) }\right) x_{1}(k) \\ \quad +h_{2}^{(2)}h_{2}^{(3)}\left\{ 1-\left( h_{2}^{(1)}\right) ^{2}\right\} x_{2}(k)\\ \quad +h_{1}^{(2)}h_{2}^{(3)}\left( 1-h_{2}^{(2)}\right) x_{3}(k) \\ \quad +h_{2}^{(3)}\left\{ 1-\left( h_{2}^{(2)}\right) ^{2}\right\} x_{4}(k)\\ \quad +h_{1}^{\left( 3\right) }\left( 1-h_{2}^{(3)}\right) x_{5}(k) \\ \quad +\left\{ 1-\left( h_{2}^{\left( 3\right) }\right) ^{2}\right\} x_{6}(k) \\ \quad -h_{1}^{\left( 4\right) }x_{7}(k) -h_{2}^{\left( 4\right) }x_{8}(k) \\ \quad +h_{2}^{(3)}h_{2}^{(2)}h_{2}^{(1)}u(k) \end{array} \right] \end{aligned}$$
(92)
$$\begin{aligned} x_{8}\left( k+1\right)&=x_{7}(k) \end{aligned}$$
(93)

and

$$\begin{aligned} x_{9}\left( k+1\right)&=\left[ \begin{array}[c]{c} h_{1}^{\left( 1\right) }h_{2}^{(2)}h_{2}^{(3)}h_{2}^{(4)}\left( 1-h_{2}^{\left( 1\right) }\right) x_{1}(k) \\ \quad + h_{2}^{(2)}h_{2}^{(3)}h_{2}^{(4)}\left\{ 1-\left( h_{2}^{(1)}\right) ^{2}\right\} x_{2}(k)\\ \quad +h_{1}^{(2)}h_{2}^{(3)}h_{2}^{(4)}\left( 1-h_{2}^{(2)}\right) x_{3}\left( k\right) \\ \quad + h_{2}^{(3)}h_{2}^{(4)}\left\{ 1-\left( h_{2}^{(2)}\right) ^{2}\right\} x_{4}(k)\\ \quad + h_{1}^{\left( 3\right) }h_{2}^{(4)}\left( 1-h_{2}^{(3)}\right) x_{5}(k)\\ \quad + h_{2}^{(4)}\left\{ 1-\left( h_{2}^{\left( 3\right) }\right) ^{2}\right\} x_{6}(k)\\ h_{1}^{(4)}\left\{ 1-h_{2}^{(4)}\right\} x_{7}(k)\\ \quad + \left\{ 1-\left( h_{2}^{\left( 4\right) }\right) ^{2}\right\} x_{8}(k) \\ -h_{1}^{\left( 5\right) }x_{9}(k) -h_{2}^{\left( 5\right) }x_{10}(k) \\ \quad + h_{2}^{(4)}h_{2}^{(3)}h_{2}^{(2)}h_{2}^{(1)}u(k) \end{array} \right] \end{aligned}$$
(94)
$$\begin{aligned} x_{10}\left( k+1\right)&=x_{9}(k) \end{aligned}$$
(95)

The above expressions in Eqs. (84)–(90), (91)–(95) can further be represented in a compact matrix form as,

$$\begin{aligned} \begin{bmatrix} x_{1}(k+1)\\ x_{2}(k+1)\\ x_{3}(k+1)\\ x_{4}(k+1)\\ x_{5}(k+1)\\ x_{6}(k+1)\\ x_{7}(k+1)\\ x_{8}(k+1)\\ x_{9}(k+1)\\ x_{10}(k+1) \end{bmatrix} =\mathbf {\digamma }\times \begin{bmatrix} x_{1}(k)\\ x_{2}(k)\\ x_{3}(k)\\ x_{4}(k)\\ x_{5}(k)\\ x_{6}(k)\\ x_{7}(k)\\ x_{8}(k)\\ x_{9}(k)\\ x_{10}(k) \end{bmatrix} + \begin{bmatrix} 1\\ 0\\ h_{2}^{(1)}\\ 0\\ h_{2}^{(1)}h_{2}^{(2)}\\ 0\\ h_{2}^{(1)}h_{2}^{(2)}h_{2}^{(3)}\\ 0\\ h_{2}^{(1)}h_{2}^{(2)}h_{2}^{(3)}h_{2}^{(4)}\\ 0 \end{bmatrix} \times u(k) \end{aligned}$$

and

$$\begin{aligned} \mathbf {\digamma }=\left[ \begin{array}[c]{cccc} \digamma _{1}&\digamma _{2}&\digamma _{3}&\digamma _{4} \end{array} \right] \end{aligned}$$

where

$$\begin{aligned} \digamma _{1}= \begin{bmatrix} -h_{1}^{(1)}&\quad -h_{2}^{(1)}\\ 1&\quad 0\\ h_{1}^{\left( 1\right) }\left( 1-h_{2}^{\left( 1\right) }\right)&\quad 1-\left( h_{2}^{(1)}\right) ^{2}\\ 0&\quad 0\\ h_{1}^{\left( 1\right) }h_{2}^{(2)}\left( 1-h_{2}^{\left( 1\right) }\right)&\quad h_{2}^{(2)}\left\{ 1-\left( h_{2}^{(1)}\right) ^{2}\right\} \\ 0&\quad 0\\ h_{1}^{\left( 1\right) }\prod \limits _{i=2}^{3}h_{2}^{(i)}\left( 1-h_{2}^{\left( 1\right) }\right)&\quad \prod \limits _{i=2}^{3}h_{2} ^{(i)}\left\{ 1-\left( h_{2}^{(1)}\right) ^{2}\right\} \\ 0&\quad 0\\ h_{1}^{\left( 1\right) }\prod \limits _{i=2}^{4}h_{2}^{(i)}\left( 1-h_{2}^{\left( 1\right) }\right)&\quad \prod \limits _{i=2}^{4}h_{2} ^{(i)}\left\{ 1-\left( h_{2}^{(1)}\right) ^{2}\right\} \\ 0&\quad 0 \end{bmatrix} \end{aligned}$$

and

$$\begin{aligned} \digamma _{2}= \begin{bmatrix} 0&\quad 0\\ 0&\quad 0\\ -h_{1}^{(2)}&\quad -h_{2}^{(2)}\\ 1&\quad 0\\ h_{1}^{(2)}\left( 1-h_{2}^{(2)}\right)&\quad 1-\left( h_{2}^{(2)}\right) ^{2}\\ 0&\quad 0\\ h_{1}^{(2)}h_{2}^{(3)}\left( 1-h_{2}^{(2)}\right)&\quad h_{2}^{(3)}\left\{ 1-\left( h_{2}^{(2)}\right) ^{2}\right\} \\ 0&\quad 0\\ h_{1}^{(2)}\prod \limits _{i=3}^{4}h_{2}^{(i)}\left( 1-h_{2}^{(2)}\right)&\quad \prod \limits _{i=3}^{4}h_{2}^{(i)}\left\{ 1-\left( h_{2}^{(2)}\right) ^{2}\right\} \\ 0&\quad 0 \end{bmatrix} \end{aligned}$$

and

$$\begin{aligned} \digamma _{3}= \begin{bmatrix} 0&\quad 0\\ 0&\quad 0\\ 0&\quad 0\\ 0&\quad 0\\ -h_{1}^{\left( 3\right) }&\quad -h_{1}^{\left( 3\right) }\\ 1&\quad 0\\ h_{1}^{(3)}\left( 1-h_{2}^{(3)}\right)&\quad 1-\left( h_{2}^{\left( 3\right) }\right) ^{2}\\ 0&\quad 0\\ h_{1}^{\left( 3\right) }h_{2}^{(4)}\left( 1-h_{2}^{(3)}\right)&\quad h_{2}^{(4)}\left\{ 1-\left( h_{2}^{\left( 3\right) }\right) ^{2}\right\} \\ 0&\quad 0 \end{bmatrix} \end{aligned}$$

and

$$\begin{aligned} \digamma _{4}= \begin{bmatrix} 0&\quad 0&\quad 0&\quad 0\\ 0&\quad 0&\quad 0&\quad 0\\ 0&\quad 0&\quad 0&\quad 0\\ 0&\quad 0&\quad 0&\quad 0\\ 0&\quad 0&\quad 0&\quad 0\\ 0&\quad 0&\quad 0&\quad 0\\ -h_{1}^{\left( 4\right) }&\quad -h_{2}^{\left( 4\right) }&\quad 0&\quad 0\\ 1&\quad 0&\quad 0&\quad 0\\ h_{1}^{(4)}\left\{ 1-h_{2}^{(4)}\right\}&\quad 1-\left( h_{2}^{\left( 4\right) }\right) ^{2}&\quad -h_{1}^{\left( 5\right) }&\quad -h_{2}^{\left( 5\right) }\\ 0&\quad 0&\quad 1&\quad 0 \end{bmatrix} \end{aligned}$$

The complete state space model can be derived as given in Eq. (20) whose \((2n-1)\)th row will be

$$\begin{aligned} x_{2n-1}\left( k+1\right)&=\left[ \begin{array}[c]{c} h_{1}^{\left( 1\right) }\prod \limits _{i=2}^{n-1}h_{2}^{(i)}\left( 1-h_{2}^{\left( 1\right) }\right) \\ \prod \limits _{i=2}^{n-1}h_{2}^{(i)}\left\{ 1-\left( h_{2}^{(1)}\right) ^{2}\right\} \\ h_{1}^{(2)}\prod \limits _{i=3}^{n-1}h_{2}^{(i)}\left( 1-h_{2}^{(2)}\right) \\ \prod \limits _{i=3}^{n-1}h_{2}^{(i)}\left\{ 1-\left( h_{2}^{(2)}\right) ^{2}\right\} \\ h_{1}^{\left( 3\right) }\prod \limits _{i=4}^{n-1}h_{2}^{(i)}\left( 1-h_{2}^{\left( 3\right) }\right) \\ \prod \limits _{i=4}^{n-1}h_{2}^{(i)}\left\{ 1-\left( h_{2}^{(3)}\right) ^{2}\right\} \\ \vdots \\ h_{1}^{\left( n-1\right) }\left( 1-h_{2}^{\left( n-1\right) }\right) \\ 1-\left( h_{2}^{\left( n-1\right) }\right) ^{2}\\ -h_{1}^{\left( n\right) }\\ -h_{2}^{\left( n\right) } \end{array} \right] ^{T}\left[ \begin{array}[c]{c} x_{1}(k) \\ x_{2}(k) \\ x_{3}(k) \\ x_{4}(k) \\ x_{5}(k) \\ x_{6}(k) \\ \vdots \\ x_{2\left( n-1\right) -1}(k) \\ x_{2\left( n-1\right) }(k) \\ x_{2n-1}(k) \\ x_{2n}(k) \end{array} \right] \nonumber \\&\quad +\left\{ \prod \limits _{i=1}^{n-1}h_{2}^{(i)}\right\} u(k) \end{aligned}$$
(96)

and

$$\begin{aligned} x_{2n}\left( k+1\right) =x_{2n-1}(k) \end{aligned}$$
(97)

which would eventually yield the Eqs. (24)–(26).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, R., Saha, P. Modelling and control of nonlinear resonating processes: part I—system identification using orthogonal basis function. Int. J. Dynam. Control 5, 1222–1236 (2017). https://doi.org/10.1007/s40435-016-0277-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0277-3

Keywords

Navigation