Skip to main content

Advertisement

Log in

A hybrid method of evolutionary algorithm and simple cell mapping for multi-objective optimization problems

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

A hybrid method is proposed to take advantages of evolutionary algorithms (EAs) and the simple cell mapping (SCM) for multi-objective optimization problems (MOPs). The hybrid method starts with a random search for Pareto optimal solutions with an EA, and follows up with a neighborhood based search and recovery algorithm using the SCM. The non-dominated sorting genetic algorithm-II (NSGA-II) is used as an example of EAs. It is found that the SCM based search and recovery algorithm can reconstruct the branches of the Pareto set even when only one point in the vicinity of the set is available from the random search by the EA. We have chosen several benchmark MOPs to compare NSGA-II and SCM separately with the EA\(+\)SCM hybrid method while using the Hausdorff distance as a performance metric, and applied the method to develop multi-objective optimal designs of PID controls for a nonlinear oscillator with time delay. The results show that the EA\(+\)SCM hybrid method is very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Coello Coello CA, Lamont GB, Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems. Springer, New York

    MATH  Google Scholar 

  2. Man KF, Tang KS, Kwong S (1996) Genetic algorithms: concepts and applications. IEEE Trans Ind Electron 43(5):519–534

    Article  Google Scholar 

  3. Zhang Q, Li H (2007) MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  4. Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669

    Article  MATH  Google Scholar 

  5. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    MATH  Google Scholar 

  6. Schütze O, Laumanns M, Coello Coello CA, Dellnitz M, Talbi EG (2008) Convergence of stochastic search algorithms to finite size Pareto set approximations. J Glob Optim 41(4):559–577

    Article  MathSciNet  MATH  Google Scholar 

  7. Schütze O, Laumanns M, Tantar E, Coello Coello CA, Talbi EG (2007) Computing gap free Pareto front approximations with stochastic search algorithms. In: Proceedings of the conference on evolutionary computation

  8. Knowles JD, Corne DW (2000) M-PAES: a memetic algorithm for multiobjective optimization. In: Proceedings of the IEEE congress on evolutionary computation. Piscataway, New Jersey, pp 325–332

  9. Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans Evol Comput 7(2):204–223

    Article  Google Scholar 

  10. Vasile M, Zuiani F (2011) Multi-agent collaborative search: an agent-based memetic multi-objective optimization algorithm applied to space trajectory design. Proc Inst Mech Eng G J Aerosp Eng 225(11):1211–1227

    Article  Google Scholar 

  11. Hernández C, Naranjani Y, Sardahi Y, Liang W, Schütze O, Sun JQ (2013) Simple cell mapping method for multiobjective optimal PID control design. Int J Dyn Control 1(3):207–223

    Google Scholar 

  12. Naranjani Y, Hernández C, Xiong FR, Schütze O, Sun JQ (2013) A hybrid algorithm for the simple cell mapping method in multi-objective optimization. In: Emmerich M, Deutz A, Schütze O, Bck T, Tantar E, Tantar AA, Moral PD, Legrand P, Bouvry P, Coello CAC (eds) EVOLVE—a bridge between probability, set oriented numerics, and evolutionary computation iv, advances in intelligent systems and computing, vol 227. Springer, New York, pp 207–223

    Google Scholar 

  13. Naranjani Y, Sardahi Y, Sun JQ, Hernández C, Schütze O (2013) Fine structure of Pareto front of multi-objective optimal feedback control design. In: Proceedings of ASME dynamic systems and control conference, p V001T15A009

  14. Dellnitz M, Hohmann A (1997) A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer Math 75(3):293–317

    Article  MathSciNet  MATH  Google Scholar 

  15. Dellnitz M, Junge O (1998) An adaptive subdivision technique for the approximation of attractors and invariant measures. Comput Vis Sci 1(2):63–68

    Article  MATH  Google Scholar 

  16. Dellnitz M, Junge O (2002) Set oriented numerical methods for dynamical systems. Handb Dyn Syst 2:221–264

    Article  MathSciNet  MATH  Google Scholar 

  17. Hillermeier C (2001) Nonlinear multiobjective optimization—a generalized homotopy approach. Birkhäuser, Berlin

    Book  MATH  Google Scholar 

  18. Dellnitz M, Schütze O, Hestermeyer T (2005) Covering Pareto sets by multilevel subdivision techniques. J Optim Theory Appl 124(1):113–136

    Article  MathSciNet  MATH  Google Scholar 

  19. Schütze O, Dell’Aere A, Dellnitz M (2005) On continuation methods for the numerical treatment of multi-objective optimization problems. In: Proceedings of practical approaches to multi-objective optimization, Dagstuhl seminar

  20. Ganapathy K, Jerome J (2012) Control of dead-time systems using derivative free local search guided population based incremental learning algorithms. Optim Eng 15(2):331–354

    Article  MathSciNet  MATH  Google Scholar 

  21. Gobbi M (2012) A k, k-\(\epsilon \) optimality selection based multi objective genetic algorithm with applications to vehicle engineering. Optim Eng 14(2):345–360

    Article  MathSciNet  MATH  Google Scholar 

  22. Cuco APC, Sousa FL, Vlassov VV, Neto AJS (2011) Multi-objective design optimization of a new space radiator. Optim Eng 12(3):393–406

    Article  MATH  Google Scholar 

  23. DuPont B, Cagan J (2016) A hybrid extended pattern search/genetic algorithm for multi-stage wind farm optimization. Optim Eng 17(1):77–103

    Article  MathSciNet  MATH  Google Scholar 

  24. Villarreal-Cervantes MG, Cruz-Villar CA, Alvarez-Gallegos J (2014) Synergetic structure-control design via a hybrid gradient-evolutionary algorithm. Optim Eng 16(3):511–539

    Article  MathSciNet  MATH  Google Scholar 

  25. Li F, Wu T, Hu M (2013) Design of a decentralized framework for collaborative product design using memetic algorithms. Optim Eng 15(3):657–676

    Article  MATH  Google Scholar 

  26. Lombardi G, Mengali G, Beux F (2006) A hybrid genetic based optimization procedure for aircraft conceptual analysis. Optim Eng 7(2):151–171

    Article  MATH  Google Scholar 

  27. Xiong F, Qin Z, Hernández C, Sardahi Y, Narajani Y, Liang W, Xue Y, Schütze O, Sun J (2013) A multi-objective optimal pid control for a nonlinear system with time delay. Theor Appl Mech Lett 3(6):9-063006

    Article  Google Scholar 

  28. Fliege J, Fux Svaiter B (2000) Steepest descent methods for multicriteria optimization. Math Methods Oper Res 51(3):479–494

    Article  MathSciNet  MATH  Google Scholar 

  29. Schäffler S, Schultz R, Weinzierl K (2002) A stochastic method for the solution of unconstrained vector optimization problems. J Optim Theory Appl 114(1):209–222

    Article  MathSciNet  MATH  Google Scholar 

  30. Schütze O, Lara A, Coello Coello CA (2011) The directed search method for unconstrained multi-objective optimization problems. In: Proceedings of the EVOLVE—a bridge between probability, set oriented numerics, and evolutionary computation, pp 1–4

  31. Lara A, Alvarado S, Salomon S, Avigad G, Coello Coello CA, Schütze O (2013) The gradient free directed search method as local search within multi-objective evolutionary algorithms. Proc EVOLVE II:153–168

    Google Scholar 

  32. Das I, Dennis J (1998) Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8:631–657

    Article  MathSciNet  MATH  Google Scholar 

  33. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer Academic Publishers, Boston

    MATH  Google Scholar 

  34. Jahn J (2006) Multiobjective search algorithm with subdivision technique. Comput Optim Appl 35(2):161–175

    Article  MathSciNet  MATH  Google Scholar 

  35. Schütze O, Laumanns M, Tantar E, Coello Coello CA, Talbi EG (2010) Computing gap free Pareto front approximations with stochastic search algorithms. Evol Comput 18(1):65–96

    Article  Google Scholar 

  36. Hsu CS (1985) A discrete method of optimal control based upon the cell state space concept. J Optim Theory Appl 46(4):547–569

    Article  MathSciNet  MATH  Google Scholar 

  37. Greenhalgh D, Marshall S (2000) Convergence criteria for genetic algorithms. SIAM J Comput 30(1):269–282

    Article  MathSciNet  MATH  Google Scholar 

  38. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  39. Schütze O, Mostaghim S, Dellnitz M, Teich J (2003) Covering Pareto sets by multilevel evolutionary subdivision techniques. In: Proceedings of evolutionary multi-criterion optimization, second international conference, Berlin, Germany, pp 118–132

  40. B̈ack T (1996) Evolutionary algorithms in theory and practice. Oxford University Press, New York

    Google Scholar 

  41. Schwefel HPP (1993) Evolution and optimum seeking: the sixth generation. Wiley, New York

    Google Scholar 

  42. Sun JQ (2008) A method of continuous time approximation of delayed dynamical systems. Commun Nonlinear Sci Numer Simul 14(4):998–1007

    Article  MathSciNet  MATH  Google Scholar 

  43. Song B, Sun JQ (2011) Lowpass filter-based continuous-time approximation of delayed dynamical systems. J Vib Control 17(8):1173–1183

    Article  MathSciNet  MATH  Google Scholar 

  44. Insperger T, Stepan G (2011) Semi-discretization for time-delay systems. Springer, New York

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The material in this paper is based on work supported by Grants (11172197, 11332008 and 11572215) from the National Natural Science Foundation of China, and a Grant from the University of California Institute for Mexico and the United States (UC MEXUS) and the Consejo Nacional de Ciencia y Tecnología de México (CONACYT) through the project “Hybridizing Set Oriented Methods and Evolutionary Strategies to Obtain Fast and Reliable Multi-objective Optimization Algorithms”. The third author (FRX) would like to thank China Scholarship Council (CSC) for sponsoring his studies in the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Qiao Sun.

Additional information

Jian-Qiao Sun: Honorary Professor of Tianjin University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naranjani, Y., Hernández, C., Xiong, FR. et al. A hybrid method of evolutionary algorithm and simple cell mapping for multi-objective optimization problems. Int. J. Dynam. Control 5, 570–582 (2017). https://doi.org/10.1007/s40435-016-0250-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0250-1

Keywords

Navigation