Skip to main content
Log in

Intra-element versus inter-element crack propagation: the numerical extensometer approach

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Numerical modeling of crack propagation is still a pressing issue in fracture mechanics. The finite element method and its variations are usually used for this purpose. One of the possibilities for modeling crack propagation is the well-known cohesive fracture mechanics. Generally, commercial finite element programs use a predefined cohesive zone, i.e., inter-element cracking modeling. Alternatively, this paper proposes a numerical strategy where the cohesive cracks can nucleate and propagate at any finite element, i.e., intra-element cracking modeling. The numerical results show a good agreement between both models when the cohesive zone is predefined. Moreover, when compared to a bending experiment on a tunnel lining segment where cracks can appear anywhere, the proposed model (the intra-element cohesive cracking model) presents good accuracy where different cracks nucleate and propagate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Paris PC (1998) Fracture mechanics and fatigue: a historical perspective. Fatigue Fract Eng Mater Struct 21:535–540. https://doi.org/10.1046/j.1460-2695.1998.00054.x

    Article  Google Scholar 

  2. Cotterell B (2002) The past, present and future of fracture mechanics. Eng Fract Mech 69:533–553. https://doi.org/10.1016/S0013-7944(01)00101-1

    Article  Google Scholar 

  3. Zhu X-K, Joyce JA (2012) Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Eng Fract Mech 85:1–46. https://doi.org/10.1016/j.engfracmech.2012.02.001

    Article  Google Scholar 

  4. Behroozinia P, Mirzaeifar R, Taheri S (2019) A review of fatigue and fracture mechanics with a focus on rubber-based materials. Proc Inst Mech Eng, Part L: J Mater: Des Appl 233(5):1005–1019. https://doi.org/10.1177/1464420717719739

    Article  Google Scholar 

  5. Marșavina L, Linul E (2020) Fracture toughness of rigid polymeric foams: a review. Fatigue Fract Eng Mater Struct 43:2483–2514. https://doi.org/10.1111/ffe.13327

    Article  Google Scholar 

  6. Poli R, Gioria R, Carrion R (2021) A poroelastic simulator with hydraulic fracture propagation using cohesive finite elements. J Braz Soc Mech Sci Eng 43:175. https://doi.org/10.1007/s40430-020-02787-4

    Article  Google Scholar 

  7. Jen MHR, Wu YJ, Wu YH, Huang WP (2023) Numerical analysis and experimental verification on crack growth and fatigue life in double-edge cracked metal plates. J Braz Soc Mech Sci Eng 45:56. https://doi.org/10.1007/s40430-022-03982-1

    Article  Google Scholar 

  8. Sinha GP, Kumar B (2023) Fracture analysis of cracked thin plate by NURBS-based extended finite element method. J Braz Soc Mech Sci Eng 45:192. https://doi.org/10.1007/s40430-023-04116-x

    Article  Google Scholar 

  9. Sharma P, Mali HS, Dixit A (2023) Mode-I interlaminar fracture modeling of DCB composite laminate using finite element techniques. J Braz Soc Mech Sci Eng 45:512. https://doi.org/10.1007/s40430-023-04427-z

    Article  Google Scholar 

  10. Han J, Hirayama D, Shintaku Y, Moriguchi S, Terada K (2024) Crack phase-field enhanced finite cover method for dynamic fracture at finite strain. Int J Numer Methods Eng 125:e7371. https://doi.org/10.1002/nme.7371

    Article  MathSciNet  Google Scholar 

  11. Park T, Kitahara A, Ishina T, Hamada S, Noguchi H (2023) Proposal of new crack-tip-opening-displacement as a mechanical driving force of elastic-plastic fracture mechanics. J Theor Appl Mech 128:104116. https://doi.org/10.1016/j.tafmec.2023.104116

    Article  Google Scholar 

  12. Chen Z, Yang D, Bian H (2023) Peridynamic modeling of crack propagation driven by hydrogen embrittlement. Eng Fract Mech 293:109687. https://doi.org/10.1016/j.engfracmech.2023.109687

    Article  Google Scholar 

  13. Wang W, Ni K, Ma H, Xiong Q, Wu Z, Wang H, Fan C (2023) Fatigue crack propagation simulation of airfoil section blade under aerodynamic and centrifugal loads. Eng Fract Mech 293:109702. https://doi.org/10.1016/j.engfracmech.2023.109702

    Article  Google Scholar 

  14. Koenke C, Harte R, Krätzig WB, Rosenstein O (1998) On adaptive remeshing techniques for crack simulation problems. Eng Comput 15(1):74–88. https://doi.org/10.1108/02644409810200695

    Article  Google Scholar 

  15. Khoei AR, Azadi H, Moslemi H (2008) Modeling of crack propagation via an automatic adaptive mesh refinement based on modified superconvergent patch recovery technique. Eng Fract Mech 75:2921–2945. https://doi.org/10.1016/j.engfracmech.2008.01.006

    Article  Google Scholar 

  16. Dai S, Augarde C, Du C, Chen D (2015) A fully automatic polygon scaled boundary finite element method for modelling crack propagation. Eng Fract Mech 133:163–178. https://doi.org/10.1016/j.engfracmech.2014.11.011

    Article  Google Scholar 

  17. Uribe-Suárez D, Bouchard P-O, Delbo M, Pino-Muñoz D (2023) Numerical modeling of crack propagation with dynamic insertion of cohesive elements. Eng Fract Mech 227:106918. https://doi.org/10.1016/j.engfracmech.2020.106918

    Article  Google Scholar 

  18. Wang C, Ping X, Wang X (2023) An adaptive finite element method for crack propagation based on a multifunctional super singular element. Int J Mech Sci 247:108191. https://doi.org/10.1016/j.ijmecsci.2023.108191

    Article  Google Scholar 

  19. Duarte CA, Oden JT (1996) H-p clouds—an h-p meshless method. Numer Methods Partial Differ Eq 12:673–705. https://doi.org/10.1002/(SICI)1098-2426(199611)12:6%3c673::AID-NUM3%3e3.0.CO;2-P

    Article  MathSciNet  Google Scholar 

  20. Belytschko T, Lu YY, Gu L (1994) Element-free galerkin methods. Int J Numer Meth Eng 37(2):229–256. https://doi.org/10.1002/nme.1620370205

    Article  MathSciNet  Google Scholar 

  21. Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free galerkin methods for crack tip fields. Int J Numer Methods Eng 40(8):1483–1504. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8%3C1483::AID-NME123%3E3.0.CO;2-6

    Article  MathSciNet  Google Scholar 

  22. Gonçalves DC, Sánchez-Arce IJ, Ramalho LDC, Campilho RDSG, Belinha J (2022) Fracture propagation based on meshless method and energy release rate criterion extended to the Double Cantilever Beam adhesive joint test. Theor Appl Fract Mech 122:103577. https://doi.org/10.1016/j.tafmec.2022.103577

    Article  Google Scholar 

  23. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1):131–150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:13.0.CO;2-J

    Article  MathSciNet  Google Scholar 

  24. Park K, Pereira JP, Duarte CA, Paulino GH (2009) Integration of singular enrichment functions in the generalized/extended finite element method for three-dimensional problems. Int J Numer Meth Eng 78:1220–1257. https://doi.org/10.1002/nme.2530

    Article  Google Scholar 

  25. Malekan M, Barros FB (2016) Well-conditioning global–local analysis using stable generalized/extended finite element method for linear elastic fracture mechanics. Comput Mech 58:819–831. https://doi.org/10.1007/s00466-016-1318-7

    Article  MathSciNet  Google Scholar 

  26. Ammendolea D, Greco F, Leonetti L, Leonetti P, Pascuzzo A, Penna R (2023) A moving mesh-based numerical investigation of the failure response of nano-filled ultra-high-performance concrete structures. Procedia Struct Integr 47:488–502. https://doi.org/10.1016/j.prostr.2023.07.075

    Article  Google Scholar 

  27. Marandi SM, Badnava H, Dehkordi MB, Nourbakhsh SH (2021) Phase-field modeling of coupled anisotropic plasticity–ductile fracture in rate-dependent solids. J Braz Soc Mech Sci Eng 43:229. https://doi.org/10.1007/s40430-021-02945-2

    Article  Google Scholar 

  28. Leão HM, Pitangueira RLS, Gori L, Penna SS (2021) Phase-field modelling of size effect on strength and structural brittleness. J Braz Soc Mech Sci Eng 43:484. https://doi.org/10.1007/s40430-021-03197-w

    Article  Google Scholar 

  29. Wu J-Y, Huang Y, Nguyen VP, Mandal TK (2022) Crack nucleation and propagation in the phase-field cohesive zone model with application to Hertzian indentation fracture. Int J Solids Struct 241:111462. https://doi.org/10.1016/j.ijsolstr.2022.111462

    Article  Google Scholar 

  30. Konica S, Sain T (2023) Phase-field fracture modeling for unidirectional fiber-reinforced polymer composites. Eur J Mech A-Solid 100:105035. https://doi.org/10.1016/j.euromechsol.2023.105035

    Article  MathSciNet  Google Scholar 

  31. Rashid MM (1997) A computational procedure for simulation of crack advance in arbitrary two-dimensional domains. Comput Mech 20:133–138. https://doi.org/10.1007/s004660050229

    Article  Google Scholar 

  32. Chen L, Li B, de Borst R (2020) Adaptive isogeometric analysis for phase-field modeling of anisotropic brittle fracture. Int J Numer Methods Eng 121(20):4630–4648. https://doi.org/10.1002/nme.6457

    Article  MathSciNet  Google Scholar 

  33. Li H, Jiang H, Yang W (2023) An extended multiphase hybrid-stress finite element method for modelling interface crack propagation between two dissimilar materials. Appl Math Model 122:60–98. https://doi.org/10.1016/j.apm.2023.05.014

    Article  MathSciNet  Google Scholar 

  34. Almeida LPR, Lima Junior ET, Barbirato JCC (2022) Probabilistic dipole BEM model for cohesive crack propagation analysis. J Braz Soc Mech Sci Eng 44:485. https://doi.org/10.1007/s40430-022-03765-8

    Article  Google Scholar 

  35. Comi C, Perego U (2001) Fracture energy based bi-dissipative damage model for concrete. Int J Solids Struct 38:6427–6454. https://doi.org/10.1016/S0020-7683(01)00066-X

    Article  Google Scholar 

  36. Feng D-C, Ren X-D, Li J (2018) Softened damage-plasticity model for analysis of cracked reinforced concrete structures. J Struct Eng 144(6):04018044. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002015

    Article  Google Scholar 

  37. Pereira Junior WM, Borges RA, Araújo DL, Fernandes GR (2023) Pituba JJC (2022) parametric identification and sensitivity analysis combined with a damage model for reinforced concrete structures. Arab J Sci Eng 48:4751–4767. https://doi.org/10.1007/s13369-022-07132-6

    Article  Google Scholar 

  38. Wang J, Poh LH, Guo X (2023) Localizing gradient damage model based on a decomposition of elastic strain energy density. Eng Fract Mech 279:109032. https://doi.org/10.1016/j.engfracmech.2022.109032

    Article  Google Scholar 

  39. Xue L, Ren X, Ballarini R (2023) Damage-plasticity modeling of shear failure in reinforced concrete structures. Eng Fract Mech 290:109536. https://doi.org/10.1016/j.engfracmech.2023.109536

    Article  Google Scholar 

  40. Yang S-Q, Hu B, Xu P (2019) Study on the damage-softening constitutive model of rock and experimental verification. Acta Mech Sinica 35(4):786–798. https://doi.org/10.1007/s10409-018-00833-y

    Article  Google Scholar 

  41. Sun X, Shi F, Luan Z, Ding J, He L, Zhang Y (2023) Constitutive model and microscopic mechanism for sandstone strength softening damage. Rock Mech Rock Eng 56:797–813. https://doi.org/10.1007/s00603-022-03096-z

    Article  Google Scholar 

  42. Xavier J, Oliveira M, Morais JJL, de Moura MFSF (2014) Determining mode I cohesive law of Pinus pinaster by coupling double cantilever beam test with digital image correlation. Frat ed Integrita Strutt 9(31):13–22. https://doi.org/10.3221/IGF-ESIS.31.02

    Article  Google Scholar 

  43. Kesava Rao B, Balu AS (2019) Modeling of delamination in fiber-reinforced composite using high-dimensional model representation-based cohesive zone model. J Braz Soc Mech Sci Eng 41:254. https://doi.org/10.1007/s40430-019-1761-4

    Article  Google Scholar 

  44. Park K, Choi H, Paulino GH (2016) Assessment of cohesive traction-separation relationships in ABAQUS: a comparative study. Mech Res Comm 78:71–78. https://doi.org/10.1016/j.mechrescom.2016.09.004

    Article  Google Scholar 

  45. Abaqus 6.13 Analysis User’s Manual, SIMULIA, Providence, IR, 2013.

  46. Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434. https://doi.org/10.1016/0022-5096(94)90003-5

    Article  Google Scholar 

  47. Florez-Lopez J, Benallal A, Geymonat G, Billardon R (1994) A two-field finite element formulation for elasticity coupled to damage. Comput Methods Appl Mech Eng 114(3–4):193–212. https://doi.org/10.1016/0045-7825(94)90171-6

    Article  MathSciNet  Google Scholar 

  48. Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899–2938. https://doi.org/10.1016/0020-7683(95)00255-3

    Article  Google Scholar 

  49. Amorim DLNF, Piedade Neto D, Proença SPB, Flórez-López J (2018) The extended lumped damage mechanics: A new formulation for the analysis of softening with FE size-independence. Mech Res Comm 91:13–18. https://doi.org/10.1016/j.mechrescom.2018.05.001

    Article  Google Scholar 

  50. Picón RA, Santos DM, Teles DVC, Amorim DLNF, Zhou X, Bai Y, Proença SPB, Flórez-López J (2022) Modeling of localization using Nash variational formulations: The extended damage mechanics. Eng Fract Mech 258:108083. https://doi.org/10.1016/j.engfracmech.2021.108083

    Article  Google Scholar 

  51. Abbas S, Soliman AM, Nehdi ML (2014) Mechanical Performance of Reinforced Concrete and Steel Fiber-Reinforced Concrete Precast Tunnel Lining Segments: A Case Study. ACI Mater J 111(5):501–510. https://doi.org/10.14359/51687101

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazil, for the grant 436523/2018-3 (Chamada Universal CNPq MCTIC) and the Scientific Computing and Visualization Laboratory of the Federal University of Alagoas (LCCV/UFAL) for access to an ABAQUS® license. The first and third authors acknowledge the Laboratory of Mathematical Modeling in Civil Engineering of the Disaster Research Institute of the Federal University of Sergipe (LAMEC/IPD/UFS) for the physical support during this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Leonardo Nascimento de Figueiredo Amorim.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim, D.N., Picón, R., Vieira, C.d. et al. Intra-element versus inter-element crack propagation: the numerical extensometer approach. J Braz. Soc. Mech. Sci. Eng. 46, 360 (2024). https://doi.org/10.1007/s40430-024-04951-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-024-04951-6

Keywords

Navigation