Skip to main content
Log in

Experimental and numerical impact behavior of fully carbon fiber sandwiches for different core types

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The aim of this study is to experimentally and numerically examine the impact strength and damage mechanisms of sandwich composites consisting entirely of fiber-reinforced composites for different core geometries. For this purpose, firstly, composite sandwich plates with egg box, lattice and square plate core structures were produced. Low-velocity impact tests were carried out by dropping impactors with hemispherical geometry onto the resulting sandwich structure with three different core geometries, and the effect of the core shape on impact strength was determined. For comparison, the cell width and height of these three different types of core were chosen to be similar. In addition, progressive damage analysis with the finite element method was applied. For this purpose, the MAT-162 material model, which provides three-dimensional progressive damage analysis in composite materials and applies the Hashin damage criterion, was preferred to be used in the LS-DYNA® program. When specific loads are compared using a square core specimen under the same conditions, it can be said that the contact force of the egg box structure is higher. While the striker rebounded from the square core at the same impact energy, it perforated the sandwich structure in the egg box and completely damaged the lattice core structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. He W, Liu J, Tao B, Xie D, Liu J, Zhang M (2016) Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures. Compos Struct C 158:30–43. https://doi.org/10.1016/j.compstruct.2016.09.009

    Article  Google Scholar 

  2. Wang B, Wu LZ, Ma L, Feng JC (2011) Low-velocity impact characteristics and residual tensile strength of carbon fiber composite lattice core sandwich structures. Compos Part B Eng 42(4):891–897. https://doi.org/10.1016/j.compositesb.2011.01.007

    Article  Google Scholar 

  3. Ivañez I, Sanchez-Saez S (2013) Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core. Compos Struct C 106:716–723. https://doi.org/10.1016/j.compstruct.2013.07.025

    Article  Google Scholar 

  4. Zhang C, Tan KT (2020) Low-velocity impact response and compression after impact behavior of tubular composite sandwich structures. Compos Part B Eng 193:108026. https://doi.org/10.1016/j.compositesb.2020.108026

    Article  Google Scholar 

  5. Liu J, He W, Xie D, Tao B (2017) The effect of impactor shape on the low-velocity impact behavior of hybrid corrugated core sandwich structures. Compos Part B Eng 111:315–331. https://doi.org/10.1016/j.compositesb.2016.11.060

    Article  Google Scholar 

  6. He W, Yao L, Meng X, Sun G, Xie D, Liu J (2019) Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets. Thin-Walled Struct C 137:411–432. https://doi.org/10.1016/j.tws.2019.01.022

    Article  Google Scholar 

  7. He W, Liu J, Wang S, Xie D (2018) Low-velocity impact behavior of X-frame core sandwich structures–experimental and numerical investigation. Thin-Walled Struct C 131:718–735. https://doi.org/10.1016/j.tws.2018.07.042

    Article  Google Scholar 

  8. Feng D, Aymerich F (2020) Effect of core density on the low-velocity impact response of foam-based sandwich composites. Compos Struct C 239:112040. https://doi.org/10.1016/j.compstruct.2020.112040

    Article  Google Scholar 

  9. Zhang X, Xu F, Zang Y, Feng W (2020) Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact. Compos Struct C 236:1118824. https://doi.org/10.1016/j.compstruct.2020.111882

    Article  Google Scholar 

  10. Wan Y, Diao C, Yang B, Zhang L, Chen S (2018) GF/epoxy laminates embedded with wire nets: a way to improve the low-velocity impact resistance and energy absorption ability. Compos Struct C 202:818–835. https://doi.org/10.1016/j.compstruct.2018.04.041

    Article  Google Scholar 

  11. He W, Liu J, Wang S, Xie D (2018) Low-velocity impact response and post-impact flexural behaviour of composite sandwich structures with corrugated cores. Compos Struct C 189:37–53. https://doi.org/10.1016/j.compstruct.2018.01.024

    Article  Google Scholar 

  12. He W, Lu S, Yi K, Wang S, Sun G, Hu Z (2019) Residual flexural properties of CFRP sandwich structures with aluminum honeycomb cores after low-velocity impact. Int J Mech Sci 161:105026. https://doi.org/10.1016/j.ijmecsci.2019.105026

    Article  Google Scholar 

  13. Wu Q, Ma L, Wu L, Xiong J (2016) A novel strengthening method for carbon fiber composite lattice truss structures. Compos Struct C 153:585–592. https://doi.org/10.1016/j.compstruct.2016.06.060

    Article  Google Scholar 

  14. Hou S, Zhao S, Ren L, Han X, Li Q (2013) Crashworthiness optimization of corrugated sandwich panels. Mater Des 51:1071–1084. https://doi.org/10.1016/j.matdes.2013.04.086

    Article  Google Scholar 

  15. Boonkong T, Shen YO, Guan ZW, Cantwell WJ (2016) The low velocity impact response of curvilinear-core sandwich structures. Int J Impact Eng 93:28–38. https://doi.org/10.1016/j.ijimpeng.2016.01.012

    Article  Google Scholar 

  16. Radford DD, Fleck NA, Deshpande VS (2006) The response of clamped sandwich beams subjected to shock loading. Int J Impact Eng 32(6):968–987. https://doi.org/10.1016/j.ijimpeng.2004.08.007

    Article  Google Scholar 

  17. Zhang G, Wang B, Ma L, Xiong J, Wu L (2013) Response of sandwich structures with pyramidal truss cores under the compression and impact loading. Compos Struct C 100:451–463. https://doi.org/10.1016/j.compstruct.2013.01.012

    Article  Google Scholar 

  18. Crupi V, Kara E, Epasto G, Guglielmino E, Aykul H (2015) Prediction model for the impact response of glass fibre reinforced aluminium foam sandwiches. Int J Impact Eng 77:97–107. https://doi.org/10.1016/j.ijimpeng.2014.11.012

    Article  Google Scholar 

  19. Balaban AC, Tee KF, Toygar ME (2019) Low velocity impact behaviour of sandwich composite structures with E-glass/epoxy facesheets and PVC foam. Proc Struct Integr 18:577–585. https://doi.org/10.1016/j.prostr.2019.08.202

    Article  Google Scholar 

  20. Jiang S, Sun F, Zhang X, Fan H (2017) Interlocking orthogrid: an efficient way to construct lightweight lattice-core sandwich composite structure. Compos Struct C 176:55–71. https://doi.org/10.1016/j.compstruct.2017.05.029

    Article  Google Scholar 

  21. Xue X, Zhang C, Chen W, Wu M, Zhao J (2019) Study on the impact resistance of honeycomb sandwich structures under low-velocity/heavy mass. Compos Struct C 226:111223. https://doi.org/10.1016/j.compstruct.2019.111223

    Article  Google Scholar 

  22. George T, Deshpande VS, Wadley HN (2013) Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores. Compos Part A Appl Sci Manuf 47:31–40. https://doi.org/10.1016/j.compositesa.2012.11.011

    Article  Google Scholar 

  23. Feng LJ, Yang ZT, Yu GC, Chen XJ, Wu LZ (2018) Compressive and shear properties of carbon fiber composite square honeycombs with optimized high-modulus hierarchical phases. Compos Struct C 201:845–856. https://doi.org/10.1016/j.compstruct.2018.06.080

    Article  Google Scholar 

  24. Wang J, Waas AM, Wang H (2013) Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels. Compos Struct C 96:298–311. https://doi.org/10.1016/j.compstruct.2012.09.002

    Article  Google Scholar 

  25. Heimbs S, Cichosz J, Klaus M, Kilchert S, Johnson AF (2010) Sandwich structures with textile-reinforced composite foldcores under impact loads. Compos Struct C 92(6):1485–1497. https://doi.org/10.1016/j.compstruct.2009.11.001

    Article  Google Scholar 

  26. Zhu G, Sun G, Li G, Cheng A, Li Q (2018) Modeling for CFRP structures subjected to quasi-static crushing. Compos Struct C 184:41–55. https://doi.org/10.1016/j.compstruct.2017.09.001

    Article  Google Scholar 

  27. Park S, Russell BP, Deshpande VS, Fleck NA (2012) Dynamic compressive response of composite square honeycombs. Compos Part A Appl Sci Manuf 43(3):527–536. https://doi.org/10.1016/j.compositesa.2011.11.022

    Article  Google Scholar 

  28. Hu Y, Li W, An X, Fan H (2016) Fabrication and mechanical behaviors of corrugated lattice truss composite sandwich panels. Compos Sci Technol 125:114–122. https://doi.org/10.1016/j.compscitech.2016.02.003

    Article  Google Scholar 

  29. Akatay A, Bora MO, Çoban O, Fidan S, Tuna V (2015) The influence of low velocity repeated impacts on residual compressive properties of honeycomb sandwich structures. Compos Struct C 125:425–433. https://doi.org/10.1016/j.compstruct.2015.02.057

    Article  Google Scholar 

  30. Chen Y, Hou S, Fu K, Han X, Ye L (2017) Low-velocity impact response of composite sandwich structures: modelling and experiment. Compos Struct C 168:322–334. https://doi.org/10.1016/j.compstruct.2017.02.064

    Article  Google Scholar 

  31. Kurşun A, Şenel M, Enginsoy HM, Bayraktar E (2016) Effect of impactor shapes on the low velocity impact damage of sandwich composite plate: experimental study and modelling. Compos Part B Eng 86:143–151. https://doi.org/10.1016/j.compositesb.2015.09.032

    Article  Google Scholar 

  32. Liao BB, Liu PF (2017) Finite element analysis of dynamic progressive failure of plastic composite laminates under low velocity impact. Compos Struct C 159:567–578. https://doi.org/10.1016/j.compstruct.2016.09.099

    Article  Google Scholar 

  33. Topac OT, Gozluklu B, Gurses E, Coker D (2017) Experimental and computational study of the damage process in CFRP composite beams under low-velocity impact. Compos Part A Appl Sci Manuf 92:167–182. https://doi.org/10.1016/j.compositesa.2016.06.023

    Article  Google Scholar 

  34. Yellur MR, Seidlitz H, Kuke F, Wartig K, Tsombanis N (2019) A low velocity impact study on press formed thermoplastic honeycomb sandwich panels. Compos Struct C 225:111061. https://doi.org/10.1016/j.compstruct.2019.111061

    Article  Google Scholar 

  35. Zhang J, Liu K, Ye Y, Qin Q (2019) Low-velocity impact of rectangular multilayer sandwich plates. Thin-Walled Struct C 141:308–318. https://doi.org/10.1016/j.tws.2019.04.033

    Article  Google Scholar 

  36. Morada G, Ouadday R, Vadean A, Boukhili R (2017) Low-velocity impact resistance of ATH/epoxy core sandwich composite panels: experimental and numerical analyses. Compos Part B Eng 114:418–431. https://doi.org/10.1016/j.compositesb.2017.01.070

    Article  Google Scholar 

  37. Wu Y, Liu Q, Fu J, Li Q, Hui D (2017) Dynamic crash responses of bio-inspired aluminum honeycomb sandwich structures with CFRP panels. Compos Part B Eng 121:122–133. https://doi.org/10.1016/j.compositesb.2017.03.030

    Article  Google Scholar 

  38. Russell BP, Liu T, Fleck NA, Deshpande VS (2012) The soft impact of composite sandwich beams with a square-honeycomb core. Int J Impact Eng 48:65–81. https://doi.org/10.1016/j.ijimpeng.2011.04.007

    Article  Google Scholar 

  39. Zhou J, Hassan MZ, Guan Z, Cantwell WJ (2012) The low velocity impact response of foam-based sandwich panels. Compos Sci Technol 72(14):1781–1790. https://doi.org/10.1016/j.compscitech.2012.07.006

    Article  Google Scholar 

  40. Shi SS, Sun Z, Hu XZ, Chen HR (2014) Carbon-fiber and aluminum-honeycomb sandwich composites with and without Kevlar-fiber interfacial toughening. Compos Part A Appl Sci Manuf 67:102–110. https://doi.org/10.1016/j.compositesa.2014.08.017

    Article  Google Scholar 

  41. Sun G, Chen D, Huo X, Zheng G, Li Q (2018) Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels. Compos Struct C 184:110–124. https://doi.org/10.1016/j.compstruct.2017.09.025

    Article  Google Scholar 

  42. Yu GC, Feng LJ, Wu LZ (2016) Thermal and mechanical properties of a multifunctional composite square honeycomb sandwich structure. Mater Des C 102:238–246. https://doi.org/10.1016/j.matdes.2016.04.050

    Article  Google Scholar 

  43. Fan H, Sun F, Yang L, Jin F, Zhao D (2013) Interlocked hierarchical lattice materials reinforced by woven textile sandwich composites. Compos Sci Technol 87:142–148. https://doi.org/10.1016/j.compscitech.2013.07.028

    Article  Google Scholar 

  44. Wang B, Wu L, Ma L, Sun Y, Du S (2010) Mechanical behavior of the sandwich structures with carbon fiber-reinforced pyramidal lattice truss core. Mater Des 31(5):2659–2663. https://doi.org/10.1016/j.matdes.2009.11.061

    Article  Google Scholar 

  45. Liu J, Liu J, Mei J, Huang W (2018) Investigation on manufacturing and mechanical behavior of all-composite sandwich structure with Y-shaped cores. Compos Sci Technol 159:87–102. https://doi.org/10.1016/j.compscitech.2018.01.026

    Article  Google Scholar 

  46. Kurşun A, Şenel M, Enginsoy HM (2015) Experimental and numerical analysis of low velocity impact on a preloaded composite plate. Adv Eng Softw C 90:41–52. https://doi.org/10.1016/j.advengsoft.2015.06.010

    Article  Google Scholar 

  47. Yu JL, Wang X, Wei ZG, Wang EH (2003) Deformation and failure mechanism of dynamically loaded sandwich beams with aluminum-foam core. Int J Impact Eng 28(3):331–347. https://doi.org/10.1016/S0734-743X(02)00053-2

    Article  Google Scholar 

  48. Tan ZH, Luo HH, Long WG, Han X (2013) Dynamic response of clamped sandwich beam with aluminium alloy foam core subjected to impact loading. Compos Part B Eng 46:39–45. https://doi.org/10.1016/j.compositesb.2012.10.044

    Article  Google Scholar 

  49. Rong Y, Liu J, Luo W, He W (2018) Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels. Compos Part B Eng 152:324–335. https://doi.org/10.1016/j.compositesb.2018.08.130

    Article  Google Scholar 

  50. Shu C, Zhao S, Hou S (2018) Crashworthiness analysis of two-layered corrugated sandwich panels under crushing loading. Thin-Walled Struct C 133:42–51. https://doi.org/10.1016/j.tws.2018.09.008

    Article  Google Scholar 

  51. Xiong J, Ma L, Wu L, Wang B, Vaziri A (2010) Fabrication and crushing behavior of low density carbon fiber composite pyramidal truss structures. Compos Struct C 92(11):2695–2702. https://doi.org/10.1016/j.compstruct.2010.03.010

    Article  Google Scholar 

  52. Mei J, Liu J, Liu J (2017) A novel fabrication method and mechanical behavior of all-composite tetrahedral truss core sandwich panel. Compos Part A Appl Sci Manuf 102:28–39. https://doi.org/10.1016/j.compositesa.2017.07.020

    Article  Google Scholar 

  53. Taghipoor H, Sefidi M (2023) Energy absorption of foam-filled corrugated core sandwich panels under quasi-static loading. Proc Inst Mech Eng Part L J Mater Des Appl 237(1):234–246

    Google Scholar 

  54. Taghipoor H, Peysayyar R (2023) Study on low-velocity impact response of kevlar/epoxy-polyurethane sandwich panels. Phys Scr 99(1):15232

    Article  Google Scholar 

  55. Peysayyar R, Taghipoor H, Nouri MD (2024) Sandwich panel behavior under low-velocity impact with polyurethane core. Proc Inst Mech Eng Part L J Mater Des Appl. https://doi.org/10.1177/14644207231223490

    Article  Google Scholar 

  56. Bozkurt I, Kaman MO, Albayrak M (2023) Low-velocity impact behaviours of sandwiches manufactured from fully carbon fiber composite for different cell types and compression behaviours for different core types. Mater Test 65(9):1349–1372

    Article  Google Scholar 

  57. Xiong J, Vaziri A, Ghosh R, Hu H, Ma L, Wu L (2016) Compression behavior and energy absorption of carbon fiber reinforced composite sandwich panels made of three-dimensional honeycomb grid cores. Extreme Mech Lett C 7:114–120. https://doi.org/10.1016/j.eml.2016.02.012

    Article  Google Scholar 

  58. D ASTM International (2012) ASTM ınternational, designation: D7136/D7136M-12 ’standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event, ASTM Int C

  59. Jo H (2017) LS-DYNA keyword user’s manual volume II material models, Version 971. Livermore Software Technology Corporation; [24]

  60. Haque BZ (2015) MAT162-user-manual-version-15A-2015, sayı 215

  61. Bozkurt I, Kaman M, Albayrak M, Bozkurt IAM, Kaman MO (2022) LS-DYNA MAT162 finding material ınputs and ınvestigation of ımpact damage in carbon composite plates. XVI. Int Res Conf, pp 3–7

  62. Hashin Z (1980) Fatigue failure criteria for unidirectional fiber composites. J Appl Mech 47(4):329–334

    Article  Google Scholar 

  63. Matzenmiller ALJTR, Lubliner J, Taylor RL (1995) A constitutive model for anisotropic damage in fiber-composites. Mech Mater 20(2):125–152. https://doi.org/10.1016/0167-6636(94)00053-0

    Article  Google Scholar 

  64. Xiao JR, Gama BA, Gillespie JW Jr (2007) Progressive damage and delamination in plain weave S-2 glass/SC-15 composites under quasi-static punch-shear loading. Compos Struct C 78(2):182–196. https://doi.org/10.1016/j.compstruct.2005.09.001

    Article  Google Scholar 

  65. Vescovini A, Balen L, Scazzosi R, da Silva AAX, Amico SC, Giglio M, Manes A (2021) Numerical investigation on the hybridization effect in inter-ply S2-glass and aramid woven composites subjected to ballistic impacts. Compos Struct C 276:114506. https://doi.org/10.1016/j.compstruct.2021.114506

    Article  Google Scholar 

  66. Chen Y, Fu K, Hou S, Han X, Ye L (2018) Multi-objective optimization for designing a composite sandwich structure under normal and 45 impact loadings. Compos Part B Eng C 142:159–170. https://doi.org/10.1016/j.compositesb.2018.01.020

    Article  Google Scholar 

  67. Sabah SA, Kueh ABH, Bunnori NM (2019) Failure mode maps of bio-inspired sandwich beams under repeated low-velocity impact. Compos Sci Technol 182:107785. https://doi.org/10.1016/j.compscitech.2019.107785

    Article  Google Scholar 

  68. Sabah SA, Kueh ABH, Al-Fasih MY (2017) Comparative low-velocity impact behavior of bio-inspired and conventional sandwich composite beams. Compos Sci Technol C 149:64–74. https://doi.org/10.1016/j.compscitech.2017.06.014

    Article  Google Scholar 

  69. Xiong J, Vaziri A, Ma L, Papadopoulos J, Wu L (2012) Compression and impact testing of two-layer composite pyramidal-core sandwich panels. Compos Struct C 94(2):793–801. https://doi.org/10.1016/j.compstruct.2011.09.018

    Article  Google Scholar 

  70. 3D printed ABS material low-velocity ımpact behavior of sandwich structures with additively manufactured polymer lattice cores—Enhanced Reader.pdf

  71. Yang JS, Zhang WM, Yang F, Chen SY, Schmidt R, Schröder KU, Wu LZ (2020) Low velocity impact behavior of carbon fibre composite curved corrugated sandwich shells. Compos Struct C 238:112027. https://doi.org/10.1016/j.compstruct.2020.112027

    Article  Google Scholar 

  72. Zhang G, Wang B, Ma L, Wu L, Pan S, Yang J (2014) Energy absorption and low velocity impact response of polyurethane foam filled pyramidal lattice core sandwich panels. Compos Struct C 108:304–310. https://doi.org/10.1016/j.compstruct.2013.09.040

    Article  Google Scholar 

Download references

Acknowledgements

At the stage of defining the MAT 162 material model to the program, Prof. Dr., who provided the Split Hopkinson Bar test to find the "Creates" parameters, at Izmir Institute of Technology. Prof. Dr. Alper TAŞDEMİRCİ and Prof. Dr. I would like to thank Mustafa GÜDEN. I would like to thank the Fırat University Scientific Research Coordination Unit, which supported this study with the project number MF20.32.

Funding

This study was supported by the Fırat University Scientific Research Coordination Unit (project number MF20.32.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mete Onur Kaman.

Ethics declarations

Conflict of interest

The authors have no financial or non-financial interests to disclose.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozkurt, I., Kaman, M.O. & Albayrak, M. Experimental and numerical impact behavior of fully carbon fiber sandwiches for different core types. J Braz. Soc. Mech. Sci. Eng. 46, 318 (2024). https://doi.org/10.1007/s40430-024-04865-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-024-04865-3

Keywords

Navigation