Skip to main content
Log in

Bandgap formation and chaos in periodic lattices with graded bistable resonators

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The interest for the study of metamaterials and metastructures has been rapidly increasing in the scientific community. A number of different approaches for the configuration of such systems have already shown to produce unique and potentially useful dynamic behavior, such as broadband vibration attenuation and negative mechanical properties. Locally resonant metamaterials are of special interest in this domain because of its versatility in creating wide bandgaps for wave propagation while being relatively simple in terms of analysis and experimental reproduction. Two specific subcategories of this type of systems have shown to enable specially promising bandgap formation behavior: nonlinear resonators and functionally graded, or rainbow, metamaterials. This work presents the yet unexplored combination of these two characteristics, showing that graded bistable nonlinear resonators can further widen the broadband vibration attenuation for a simple 1-D periodic lattice system due to chaotic response. This work also presents an contribution on the phenomenology of the vibration attenuation mechanisms with chaotic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Hussein MI, Leamy MJ & Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66:040802

    Article  ADS  Google Scholar 

  2. Vasileiadis T et al (2021) Progress and perspectives on phononic crystals. J Appl Phys 129:160901. https://doi.org/10.1063/5.0042337

    Article  CAS  ADS  Google Scholar 

  3. Dalela S, Balaji PS, Jena DP (2021) A review on application of mechanical metamaterials for vibration control. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2021.1892244

    Article  Google Scholar 

  4. Wu L et al (2021) A brief review of dynamic mechanical metamaterials for mechanical energy manipulation. Mater Today 44:168–193

    Article  CAS  Google Scholar 

  5. Deng B, Raney JR, Bertoldi K, and Tournat V (2021) Nonlinear waves in flexible mechanical metamaterials. J Appl Phys 130:040901

    Article  CAS  Google Scholar 

  6. Narisetti RK, Leamy MJ, Ruzzene M (2010) A perturbation approach for predicting wave propagation in one-dimensional nonlinear periodic structures. J Vib Acoust 132:031001. https://doi.org/10.1115/1.4000775

    Article  Google Scholar 

  7. Khajehtourian R, Hussein MI (2014) Dispersion characteristics of a nonlinear elastic metamaterial. AIP Adv 4:124308. https://doi.org/10.1063/1.4905051

    Article  CAS  ADS  Google Scholar 

  8. Nadkarni N, Daraio C, Kochmann DM (2014) Dynamics of periodic mechanical structures containing bistable elastic elements: From elastic to solitary wave propagation. Phys Rev E 90:023204. https://doi.org/10.1103/PhysRevE.90.023204

    Article  CAS  ADS  Google Scholar 

  9. Ganesh R, and Gonella S (2017) Nonlinear waves in lattice materials: adaptively augmented directivity and functionality enhancement by modal mixing. J Mech Phys Solids 99:272–288. https://www.sciencedirect.com/science/article/pii/S0022509616305440

  10. Ramakrishnan V, Frazier MJ (2020) Transition waves in multi-stable metamaterials with space-time modulated potentials. Appl Phys Lett 117:151901. https://doi.org/10.1063/5.0023472

    Article  CAS  ADS  Google Scholar 

  11. Mohammed MA, Grover P (2022) Phase space analysis of nonlinear wave propagation in a bistable mechanical metamaterial with a defect. Phys Rev E 106:054204. https://doi.org/10.1103/PhysRevE.106.054204

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  12. Hwang M, Arrieta AF (2018) Solitary waves in bistable lattices with stiffness grading: augmenting propagation control. Phys Rev E 98:042205. https://doi.org/10.1103/PhysRevE.98.042205

    Article  MathSciNet  CAS  ADS  Google Scholar 

  13. Meaud J (2018) Multistable two-dimensional spring-mass lattices with tunable band gaps and wave directionality. J Sound Vib 434:44–62. https://www.sciencedirect.com/science/article/pii/S0022460X18304760

  14. Hwang M, Arrieta AF (2021) Extreme frequency conversion from soliton resonant interactions. Phys Rev Lett 126:073902. https://doi.org/10.1103/PhysRevLett.126.073902

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Xia Y, Ruzzene M, and Erturk A (2019) Dramatic bandwidth enhancement in nonlinear metastructures via bistable attachments. Appl Phys Lett 114:093501

    Article  ADS  Google Scholar 

  16. Xia Y, Ruzzene M, Erturk A (2020) Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam. Nonlinear Dyn 102:1285–1296

    Article  Google Scholar 

  17. Fang X, Wen J, Bonello B, Yin J, & Yu D (2017) Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nat Commun 8:1288. https://www.nature.com/articles/s41467-017-00671-9

  18. Fang X, Wen J, Yin J, Yu D, Xiao Y (2016) Broadband and tunable one-dimensional strongly nonlinear acoustic metamaterials: theoretical study. Phys Rev E 94:052206. https://doi.org/10.1103/PhysRevE.94.052206

    Article  PubMed  ADS  Google Scholar 

  19. Sheng P, Fang X, Wen J, Yu D (2021) Vibration properties and optimized design of a nonlinear acoustic metamaterial beam. J Sound Vib 492:115739

    Article  Google Scholar 

  20. Nayfeh AH, and Mook DT (2008) Nonlinear oscillations. John Wiley & Sons

  21. Baily EM (1968) Steady-state harmonic analysis of nonlinear networks. Stanford University

  22. Detroux T, Renson L, Masset L, Kerschen G (2015) The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems. Comput Methods Appl Mech Eng 296:18–38

    Article  MathSciNet  ADS  Google Scholar 

  23. Virtanen P et al (2020) Fundamental algorithms for scientific computing in Python SciPy 1.0. Nat Methods 17:261–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Floquet G (1883) Sur les équations différentielles linéaires à coefficients périodiques 12:47–88

  25. Skubachevskii AL, Walther H-O (2006) On the floquet multipliers of periodic solutions to non-linear functional differential equations. J Dyn Differ Equs 18:257–355

    Article  MathSciNet  Google Scholar 

  26. Lust K (2001) Improved numerical floquet multipliers. Int J Bifurc Chaos 11:2389–2410

    Article  MathSciNet  Google Scholar 

  27. Brandão AA, de Paula AS, Fabro AT (2022) Rainbow gyroscopic disk metastructures for broadband vibration attenuation in rotors. J Sound Vib 532:116982

    Article  Google Scholar 

  28. Meng H, Chronopoulos D, Fabro AT, Elmadih W, Maskery I (2020) Rainbow metamaterials for broadband multi-frequency vibration attenuation: numerical analysis and experimental validation. J Sound Vib 465:115005

    Article  Google Scholar 

  29. Fabro AT, Beli D, Ferguson NS, Arruda JRF, Mace BR (2021) Wave and vibration analysis of elastic metamaterial and phononic crystal beams with slowly varying properties. Wave Motion 103:102728

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Brazilian National Council of Research (CNPq - Brazil), processes number 310850/2019-3, 433730/2018-8 and 314168/2020-6, the Federal District Foundation for Research Support (FAPDF -Brazil), project number 00193-00000766/2021-71, 00193-00001139/2021-57 and 00193-00001804/2022-93 for the support and the São Paulo Research Foundation (FAPESP - Brazil), project number 2018/15894-0.

Funding

The authors received funding from the Brazilian National Council of Research (CNPq - Brazil), processes number 310850/2019-3, 433730/2018-8 and 314168/2020-6, the Federal District Foundation for Research Support (FAPDF -Brazil), project number 00193-00000766/2021-71 and 00193-00001804/2022-93 and the São Paulo Research Foundation (FAPESP - Brazil), project number 2018/15894-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Brandão.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Technical Editor: Marcelo Areias Trindade.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandão, A., de Paula, A.S. & Fabro, A. Bandgap formation and chaos in periodic lattices with graded bistable resonators. J Braz. Soc. Mech. Sci. Eng. 46, 104 (2024). https://doi.org/10.1007/s40430-023-04675-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04675-z

Keywords

Navigation