Skip to main content
Log in

On the Floquet Multipliers of Periodic Solutions to Non-linear Functional Differential Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

For periodic solutions to the autonomous delay differential equation

$$x^{\prime}(t) =-\mu x(t) + f(x(t-1))$$

with rational periods we derive a characteristic equation for the Floquet multipliers. This generalizes a result from an earlier paper where only periods larger than 2 were considered. As an application we obtain a criterion for hyperbolicity of certain periodic solutions, which are rapidly oscillating in the sense that the delay 1 is larger than the distance between consecutive zeros. The criterion is used to find periodic orbits which are unstable and hyperbolic. An example of a non-autonomous periodic linear delay differential equation with a monodromy operator which is not hyperbolic shows how subtle the conditions of the hyperbolicity criteria in the present paper and in its predecessor are. We also derive first results on Floquet multipliers in case of irrational periods. These are based on approximations by periodic solutions with rational periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao Y. (1996). Uniqueness of periodic solutions for differential delay equations. J. Diff. Eqs. 128:46–57

    Article  MATH  Google Scholar 

  2. Chow S.N., Diekmann O., and Mallet-Paret J. (1985). Stability, multiplicity and global continuation of symmetric periodic solutions of a nonlinear Volterra integral equation. Jpn. J. Appl. Math. 2:433–469

    Article  MathSciNet  MATH  Google Scholar 

  3. Chow S.N., and Walther H.O. (1988). Characteristic multipliers and stability of symmetric periodic solutions of \(\dot{x} (t) = g(x(t - 1))\). Trans. A.M.S. 307:127–142

    Article  MathSciNet  MATH  Google Scholar 

  4. Diekmann O., van Gils S., Verduyn Lunel S.M., and Walther H.O. (1995). Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Springer, New York

    MATH  Google Scholar 

  5. Dieudonné J. (1960). Foundations of Modern Analysis. Academic Press, New York

    MATH  Google Scholar 

  6. Dormayer P. (1989). Smooth bifurcation of symmetric periodic solutions of functional differential equations. J. Diff. Eqs. 82:109–155

    Article  MathSciNet  MATH  Google Scholar 

  7. Dormayer P. (1992). Smooth symmetry breaking bifurcation for functional differential equations. Diff. Int. Eqs. 5:831–854

    MathSciNet  MATH  Google Scholar 

  8. Dormayer P. (1992). An attractivity region for characteristic multipiers of special symmetric solutions of \(\dot{x} (t) = \alpha f(x(t - 1))\) near critical amplitudes. J. Math. Anal. Appl. 169:70–91

    Article  MathSciNet  MATH  Google Scholar 

  9. Dormayer P. (1996). Floquet Multipliers and Secondary Bifurcation of Periodic Solutions of Functional Differential Equations. Habilitation thesis, Mathematisches Institut, Universität Gießen, Gießen

    Google Scholar 

  10. Dormayer P., and Ivanov A.F. (1999). Stability of symmetric periodic solutions with small amplitudes of ; \(\dot{x} (t) = \alpha f(x(t), x(t-1))\). Discrete Cont. Dyn. Syst. 5:61–82

    MathSciNet  MATH  Google Scholar 

  11. Dormayer P., Ivanov A.F., and Lani-Wayda B. (2002). Floquet multipliers of rapidly oscillating periodic solutions of delay equations. Tohoku Math. J. 54:419–441

    Article  MathSciNet  MATH  Google Scholar 

  12. Dunford N., and Schwartz J.T. (1958). Linear Operators. Part I: General Theory. Interscience Publishers, New York

    Google Scholar 

  13. Gohberg, I. C., and Sigal, E. I. (1971). An operator generalization of the logarithmic residue theorem and the theorem of Rouché. Mat. Sbornik 84(126), 607–629; English transl.: in Math. USSR Sb. 13, 603–625.

    Google Scholar 

  14. Hale J.K., and Verduyn Lunel S.M. (1993). Introduction to Functional Differential Equations. Springer, New York

    MATH  Google Scholar 

  15. Huang, Y. S., and Mallet-Paret, J. (Preprint). Asymptotics of the Spectrum for Linear Periodic Delay Equations. Department of Mathematics, University of Toledo, Toledo (Ohio)

  16. Huang, Y. S., and Mallet-Paret, J. (Preprint). A Homotopy Method in Locating the Floquet Exponents for Linear Periodic Delay Differential Equations, Department of Mathematics, University of Toledo, Toledo (Ohio)

  17. Huang, Y. S., and Mallet-Paret, J. (Preprint). An Infinite-Dimensional Version of the Floquet Theorem, Department of Mathematics, University of Toledo, Toledo (Ohio).

  18. Ivanov A., Lani-Wayda B., and Walther H.O. (1992). Unstable Hyperbolic Periodic Solutions of Differential Delay Equations. In: Agarwal R.P. (eds) Recent Trends in Differential Equations, WSSIAA vol 1. World Scientific, Singapore, pp. 301–316

    Google Scholar 

  19. Kaplan J.L., and Yorke J.A. (1974). Ordinary differential equations which yield periodic solutions of delay differential equations. J. Math. Anal. Appl. 48:317–324

    Article  MathSciNet  MATH  Google Scholar 

  20. Kaplan J.L., and Yorke J.A. (1975). On the stability of a periodic solution of a differential delay equation. SIAM J. Math. Anal. 6:268–282

    Article  MathSciNet  MATH  Google Scholar 

  21. Kato T. (1966). Perturbation Theory for Linear Operators. Springer, New York

    MATH  Google Scholar 

  22. Keldysh M.V. (1951). On the eigenvalues and eigenfunctions of certain classes of non-selfadjoint equations. Dokl. Acad. Nauk SSSR 77:11–14 (in Russian)

    MATH  Google Scholar 

  23. Krein, S. G. (1971). Linear Equations in Banach Spaces. Nauka, Moskow, 1971 (English transl.: Birkhäuser, Boston, (1982).

  24. Krisztin T., and Walther H.O. (2001). Unique periodic orbits for delayed positive feedback and the global attractor. J. Dyn. Diff. Eqs. 13:1–57

    Article  MathSciNet  MATH  Google Scholar 

  25. Krisztin, T., Walther, H. O., and Wu, J. (1999) Shape, Smoothness and Invariant Stratification of an Attracting Set for Delayed Monotone Positive Feedback, Fields Institute Monographs, vol. 11, A.M.S., Providence.

  26. Lani-Wayda B., and Walther H.O. (1995). Chaotic motion generated by delayed negative feedback I: A transversality criterion. Diff. Int. Eqs. 8:1407–1452

    MathSciNet  MATH  Google Scholar 

  27. Lani-Wayda B., and Walther H.O. (1996). Chaotic motion generated by delayed negative feedback II: Construction of nonlinearities. Mathematische Nachrichten 180:141–211

    Article  MathSciNet  MATH  Google Scholar 

  28. Mallet-Paret J., and Nussbaum R.D. (1986). Global continuation and asymptotic behaviour for periodic solutions of a differential-delay equation. Annali di Matematica Pura ed Applicata 145:33–128

    Article  MathSciNet  MATH  Google Scholar 

  29. Mallet-Paret J., and Sell G. (1996). Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions. J. Diff. Eqs. 125:385–440

    Article  MathSciNet  MATH  Google Scholar 

  30. Mallet-Paret, J., and Walther, H. O. (Preprint). Rapidly Oscillating Solutions are Rare in Scalar Systems Governed by Monotone Negative Feedback With a Time Lag. Mathematisches Institut, Universität Gießen, Gießen.

  31. Nussbaum R.D. (1977). The range of periods of x′(t)=−α f(x(t − 1)). J. Math. Anal. Appl. 58:280–292

    Article  MathSciNet  MATH  Google Scholar 

  32. Nussbaum R.D. (1979). Uniqueness and nonuniqueness for periodic solutions of x′(t)=−g(x(t − 1)). J. Diff. Eqs. 34:25–54

    Article  MathSciNet  MATH  Google Scholar 

  33. Skubachevskii A.L. (1997). Elliptic Functional Differential Equations and Applications. Birkhäuser, Basel-Boston-Berlin

    MATH  Google Scholar 

  34. Skubachevskii A.L., and Walther H.O. (2002). On the spectrum of the monodromy operator for slowly oscillating periodic solutions of functional differential equations. Dokl. Acad. Nauk 384:442–445 (English transl.: in Russian Acad.Sci. Dokl. Math. 65 (2002))

    MathSciNet  Google Scholar 

  35. Skubachevskii A.L., and Walther H.O. (2003). On the Floquet multipliers for slowly oscillating periodic solutions of nonlinear functional differential equations. Trudy Moskov. Mat. Obshch. 64:3–53 (English transl.: in Trans. Moscow Math. Soc. (2003))

    MathSciNet  Google Scholar 

  36. Walther H.O. (1981). Density of slowly oscillating solutions of \(\dot {x}(t) = -f(x(t - 1))\). J. Math. Anal. Appl. 79:127–140

    Article  MathSciNet  MATH  Google Scholar 

  37. Walther H.O. (1983). Bifurcation from periodic solutions in functional differential equation. Mathematische Zeitschrift 182:269–289

    Article  MathSciNet  MATH  Google Scholar 

  38. Walther, H. O. (1989). Hyperbolic periodic solutions, heteroclinic connections and transversal homoclinic points in autonomous differential delay equations. Memoirs of the A.M.S. 402.

  39. Walther H.O. (1991). On Floquet multipliers of periodic solutions of delay equations with monotone nonlinearities. In: Yoshizawa T., and Kato J. (eds) Proc. Int. Symp. on Functional Differential Equations Kyoto 1990. World Scientific, Singapore, pp. 349–356

    Google Scholar 

  40. Walther H.O. (2001). Contracting return maps for some delay differential equations, Functional Differential and Difference Equations. In: Faria, T., and P. Freitas (eds), A.M.S., Providence, pp. 349–360.

  41. Walther H.O. (2001). Contracting return maps for monotone delayed feedback. Discrete Cont. Dyn. Syst. 7:259–274

    Article  MathSciNet  MATH  Google Scholar 

  42. Walther H.O. (2003). Stable periodic motion of a delayed spring. Topol. Meth. Nonlinear Anal. 21:1–28

    MathSciNet  MATH  Google Scholar 

  43. Walther H.O. (2002). Stable periodic motion of a system with state-dependent delay. Diff. Int. Eqs. 15:923–944

    MathSciNet  MATH  Google Scholar 

  44. Walther H.O. (2003). Stable periodic motion of a system using echo for position control. J. Dyn. Diff. Eqs. 13:143–223

    Article  MathSciNet  Google Scholar 

  45. Xie X. (1992) The multiplier equation and its application to S-solutions of a differential delay equation. J. Diff. Eqs. 95:259–280

    Article  MATH  Google Scholar 

  46. Xie X. (1991). Uniqueness and stability of slowly oscillating periodic solutions of delay equations with bounded nonlinearity. J. Dyn. Diff. Eqs. 3:515–540

    Article  MATH  Google Scholar 

  47. Xie X. (1993). Uniqueness and stability of slowly oscillating periodic solutions of delay equations with unbounded nonlinearity. J. Diff. Eqs. 103:350–374

    Article  MATH  Google Scholar 

  48. Zhuravlev N.B. (2006). On the spectrum of the monodromy operator for slowly oscillating periodic solutions of functional differential equations with several delays. Funct. Diff. Eqs. 13:323–344

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Otto Walther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skubachevskii, A.L., Walther, HO. On the Floquet Multipliers of Periodic Solutions to Non-linear Functional Differential Equations. J Dyn Diff Equat 18, 257–355 (2006). https://doi.org/10.1007/s10884-006-9006-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-006-9006-5

Keywords

AMS Classification

Navigation