Skip to main content

Advertisement

Log in

Dimensional synthesis of motion generation of a spatial RCCC mechanism

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A dimensional synthesis method for a spatial RCCC rigid-body guidance mechanism that satisfies non-periodic design requirements is proposed. By solving the 21-dimensional spatial RCCC mechanism motion generation problem in five steps, the dimension of the numerical atlas database is effectively reduced. The installation angle parameters, link twists, link lengths and link offset are matched using the established numerical atlas database. The mechanism geometric parameters obtained from the database are then optimized using a genetic algorithm. On this basis, the equations for calculating the actual sizes and installation position parameters of the objective mechanism are established; thus, the spatial RCCC mechanism motion generation with non-periodic design requirements is realized. Since there are fewer independent variables in each step of the proposed reduced dimensional synthesis method, the computational burden is smaller than existing numerical atlas method. Avoiding the solution of complex nonlinear equations, the method is therefore not limited by the number of prescribed positions compared with the analytical method. Moreover, since the problem of synchronous optimization of input angles and geometric parameters is avoided, the efficiency is far higher than optimization method. Two examples are presented to demonstrate the efficacy and accuracy of the proposed theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Freudenstein F (1955) Approximate synthesis of four-bar linkages. Transactions of the ASME 77:853–861. https://doi.org/10.1115/1.4014513

    Article  MathSciNet  Google Scholar 

  2. Liu W, Si H, Wang C et al (2023) Dimensional synthesis of motion generation in a spherical four-bar mechanism. Trans Can Soc Mech Eng. https://doi.org/10.1139/tcsme-2023-0067

    Article  Google Scholar 

  3. Zhang C, Norton PERL, Hammonds T (1984) Optimization of parameters for specified path generation using an atlas of coupler curves of geared five-bar linkages. Mech Mach Theory 19(6):459–466. https://doi.org/10.1016/0094-114X(84)90052-1

    Article  Google Scholar 

  4. Bulatović RR, Ðorđević SR (2011) Control of the optimum synthesis process of a four-bar linkage whose point on the working member generates the given path. Appl Math Comput 217(23):9765–9778. https://doi.org/10.1016/j.amc.2011.04.064

    Article  Google Scholar 

  5. Huang QJ, Yu YC, Zhang K, Li SQ, Lu HB, Li JS, Zhang AD, Mei T (2022) Optimal synthesis of mechanisms using repellency evolutionary algorithm. Knowl-Based Syst 239:107928. https://doi.org/10.1016/j.knosys.2021.107928

    Article  Google Scholar 

  6. Han JY, Cao Y (2017) Synthesis of 4C and RCCC linkages to visit four positions based on solution region methodology. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers. 58172: V05AT08A052. https://doi.org/10.1115/DETC2017-68214

  7. Zhang W, Liu Z, Sun J et al (2022) Path synthesis of a spherical five-bar mechanism based on a numerical atlas method. J Braz Soc Mech Sci Eng 44:554. https://doi.org/10.1007/s40430-022-03860-w

    Article  Google Scholar 

  8. Li X, Wu T, Liu W, et al. (2020) Kinematic analysis and dimension synthesis of a spatial RRPCR mechanism. In: 2020 6th International Conference on Mechanical Engineering and Automation Science (ICMEAS). IEEE: 87–92. https://doi.org/10.1109/ICMEAS51739.2020.00024

  9. Liu W, Zhao Y, Qin T et al (2023) Optimal synthesis of a spatial RRSS mechanism for path generation. Meccanica 58:255–285. https://doi.org/10.1007/s11012-022-01616-3

    Article  MathSciNet  Google Scholar 

  10. Lin S, Wang H, Zhang Y et al (2020) Kinematic geometry description of a line with four positions and its application in dimension synthesis of spatial linkage. J Mech Robot 12(3):031006. https://doi.org/10.1115/1.4045426

    Article  Google Scholar 

  11. Bai SP, Li Z, Angeles J (2022) Exact path synthesis of rccc linkages for a maximum of nine prescribed positions. J Mech Robot 14(2):021011. https://doi.org/10.1115/1.4052336

    Article  Google Scholar 

  12. Figliolini G, Rea P, Angeles J (2016) The synthesis of the axodes of RCCC linkages. J Mech Robot 8(2):021011. https://doi.org/10.1115/1.4031950

    Article  Google Scholar 

  13. Garcia-Marina V, Fernández de Bustos I, Urkullu G et al (2020) Optimum dimensional synthesis of planar mechanisms with geometric constraints. Meccanica 55(11):2135–2158. https://doi.org/10.1007/s11012-020-01250-x

    Article  MathSciNet  Google Scholar 

  14. Zhang K, Huang Q, Zhang Y et al (2019) Hybrid Lagrange interpolation differential evolution algorithm for path synthesis. Mech Mach Theory 134:512–540. https://doi.org/10.1016/j.mechmachtheory.2019.01.012

    Article  Google Scholar 

  15. Hadizadeh Kafash S, Nahvi A (2017) Optimal synthesis of four-bar motion generator linkages using circular proximity function. Proc Inst Mech Eng C J Mech Eng Sci 231(5):892–908. https://doi.org/10.1177/0954406215621586

    Article  Google Scholar 

  16. Kafash SH, Nahvi A (2017) Optimal synthesis of four-bar path generator linkages using circular proximity function. Mech Mach Theory 115:18–34. https://doi.org/10.1016/j.mechmachtheory.2017.04.010

    Article  Google Scholar 

  17. Han JY, Cao Y (2019) Analytical synthesis methodology of RCCC linkages for the specified four poses. Mech Mach Theory 133:531–544. https://doi.org/10.1016/j.mechmachtheory.2018.12.005

    Article  Google Scholar 

  18. Cao Y, Han JY (2020) Solution region-based synthesis methodology for spatial HCCC linkages. Mech Mach Theory 143:103619. https://doi.org/10.1016/j.mechmachtheory.2019.103619

    Article  Google Scholar 

  19. Wang GM, Zhang H, Li X et al (2019) Computer-aided synthesis of spherical and planar 4R linkages for four specified orientations. Mechanical sciences 10(1):309–320. https://doi.org/10.5194/ms-10-309-2019,2019

    Article  Google Scholar 

  20. Zhang W, Liu Z, Liu W, Sun J, Lu H (2023) Dimensional synthesis of a spherical linkage crank slider mechanism for motion generation using an optimization algorithm. Mech Sci 14:125–142. https://doi.org/10.5194/ms-14-125-2023

    Article  Google Scholar 

  21. Hernández A, Muñoyerro A, Urízar M et al (2021) Hybrid optimization based mathematical procedure for dimensional synthesis of slider-crank linkage. Mathematics 9(13):1581. https://doi.org/10.3390/math9131581

    Article  Google Scholar 

  22. Peón-Escalante R, Jiménez FC, Soberanis MAE et al (2020) Path generation with dwells in the optimum dimensional synthesis of stephenson III six-bar mechanisms. Mech Mach Theory 144:103650. https://doi.org/10.1016/j.mechmachtheory.2019.103650

    Article  Google Scholar 

  23. Hernández A, Muñoyerro A, Urízar M et al (2021) Comprehensive approach for the dimensional synthesis of a four-bar linkage based on path assessment and reformulating the error function. Mech Mach Theory 156:104126. https://doi.org/10.1016/j.mechmachtheory.2020.104126

    Article  Google Scholar 

  24. Lee WT, Cosme J, Russell K (2017) On RCCC linkage motion generation with defect elimination for an indefinite number of precision positions. J Mech Robot 9(6):064501. https://doi.org/10.1115/1.4038066

    Article  Google Scholar 

  25. Bai SP, Angeles J (2015) Synthesis of RCCC linkages to visit four given poses. J Mech Robot 7(3):031004. https://doi.org/10.1115/1.4028637

    Article  Google Scholar 

  26. Peñuñuri F, Peón-Escalante R, Villanueva C et al (2011) Synthesis of mechanisms for single and hybrid tasks using differential evolution. Mech Mach Theory 46(10):1335–1349. https://doi.org/10.1016/j.mechmachtheory.2011.05.013

    Article  Google Scholar 

  27. Lee WT, Shen Q, Russell K (2020) A general spatial multi-loop linkage optimization model for motion generation with static loading. Inverse Probl Sci Eng 28(1):69–86. https://doi.org/10.1080/17415977.2019.1603301

    Article  MathSciNet  Google Scholar 

  28. Zhao P, Li X, Zhu L et al (2016) A novel motion synthesis approach with expandable solution space for planar linkages based on kinematic-mapping. Mech Mach Theory 105:164–175. https://doi.org/10.1016/j.mechmachtheory.2016.06.021

    Article  Google Scholar 

  29. Sancibrian R, Sarabia EG, Sedano A et al (2016) A general method for the optimal synthesis of mechanisms using prescribed instant center positions. Appl Math Model 40(3):2206–2222. https://doi.org/10.1016/j.apm.2015.09.032

    Article  MathSciNet  Google Scholar 

  30. Russell K, Shen Q, Lee WT et al (2009) On the synthesis of spatial RRSS motion generators with prescribed coupler loads. J Adv Mech Des Syst Manuf 3(3):236–244. https://doi.org/10.1299/jamdsm.3.236

    Article  Google Scholar 

  31. Wu J, Ge QJ, Gao F et al (2011) On the extension of a Fourier descriptor based method for planar four-bar linkage synthesis for generation of open and closed paths. J Mech Robot 3(3):031002. https://doi.org/10.1115/1.4004227

    Article  Google Scholar 

  32. Unruh V, Krishnaswami P (1995) A computer-aided design technique for semi-automated infinite point coupler curve synthesis of four-bar linkages. J Mech Des 117(1):143–149. https://doi.org/10.1115/1.2826099

    Article  Google Scholar 

  33. Galán-Marín G, Alonso FJ, Del Castillo JM (2009) Shape optimization for path synthesis of crank-rocker mechanisms using a wavelet-based neural network. Mech Mach Theory 44(6):1132–1143. https://doi.org/10.1016/j.mechmachtheory.2008.09.006

    Article  Google Scholar 

  34. Mullineux G (2011) Atlas of spherical four-bar mechanisms. Mech Mach Theory 46(11):1811–1823. https://doi.org/10.1016/j.mechmachtheory.2011.06.001

    Article  Google Scholar 

  35. Li XY, Wu J, Ge QJ (2016) A Fourier descriptor-based approach to design space decomposition for planar motion approximation. J Mech Robot 8(6):064501. https://doi.org/10.1115/1.4033528

    Article  Google Scholar 

  36. Sharma S, Purwar A, Jeffrey GQ (2019) A motion synthesis approach to solving Alt-Burmester problem by exploiting Fourier descriptor relationship between path and orientation data. J Mech Robot 11(1):011016. https://doi.org/10.1115/1.4042054

    Article  Google Scholar 

  37. Sun JW, Liu Q, Chu J (2017) Motion generation of RCCC mechanism using numerical atlas. Mech Based Des Struct Mach 45(1):62–75. https://doi.org/10.1080/15397734.2016.1144206

    Article  Google Scholar 

  38. Liu W R, Sun J W, Chu J (2019) Dimensional Synthesis of Non-periodic Function Generation of a Spatial RSSR Mechanism Using a Numerical Atlas Method. In: IFToMM International Conference on Mechanisms, Transmissions and Applications. Springer, Singapore. 12–20. https://doi.org/10.1007/978-981-15-0142-5_2

  39. Liu WR, Sun JW, Zhang B et al (2018) A novel synthesis method for nonperiodic function generation of an RCCC Mechanism. J Mech Robot 10(3):034502. https://doi.org/10.1115/1.4039497

    Article  Google Scholar 

  40. Liu WR, Sun JW, Chu J (2020) Synthesis of a spatial RRSS mechanism for path generation using the numerical atlas method. J Mech Des 142(1):012303. https://doi.org/10.1115/1.4044110

    Article  Google Scholar 

  41. Su H, Collins CL, McCarthy JM (2002) Classification of RRSS linkages. Mech Mach Theory 37(11):1413–1433. https://doi.org/10.1016/S0094-114X(02)00060-5

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Hubei Provincial Natural Science Foundation of China (Grant No. 2022CFC035), the Hubei Province Major Science and Technology Special Project (Grant No. 2021AAA003), the National Natural Science Foundation of China (Grant No. 62171328), the Jilin Provincial Department of Science and Technology Youth Science and Technology Innovation Team Project (Grant No. 20210509041RQ), the Scientific Research Project of Education Department of Hubei Province (Grant No. D20222603), the Science and Technology Project of Xiangyang City (Grant No. 2022ABH006646), and the Science and Technology Project of Xiangyang high-tech zone. All findings and results presented in this paper are those of the authors and do not represent those of the funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenrui Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Rogério Sales Gonçalves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Based on Eq. (11), the projection of point Ptn (xPtn, yPtn, and zPtn) of rigid-body line PtnQtn in complex plane xOy′ can be expressed as:

$$x_{Pt}^{n} + iy_{Pt}^{n} = - \left[ {r_{P} \sin \alpha_{Px} \cos \left( {\theta_{2}^{n} + \alpha_{Pyz} } \right) + a_{12} } \right]e^{{i\theta_{1}^{n} }} - i\left[ {\left( {r_{P} \cos \alpha_{Px} - S_{2}^{n} } \right)\sin \alpha_{12} + r_{P} \sin \alpha_{Px} \sin \left( {\theta_{2}^{n} + \alpha_{Pyz} } \right)\cos \alpha_{12} } \right]e^{{i\theta_{1}^{n} }} + O_{x} + iO_{y}$$
(29)

According to Eq. (29), to eliminate installation position parameters Ox and Oy, the difference between the projection of point PtM of the rigid-body line PtMQtM and that of point PtM+1 of the rigid-body line Pt M+1Qt M+1 in the complex plane xOy′ can be expressed as:

$${\mathbf{F}}^{M} = x_{Pt}^{M + 1} + iy_{Pt}^{M + 1} - \left( {x_{Pt}^{M} + iy_{Pt}^{M} } \right).$$
(30)

Then, the vector FM is rotated corresponding Δθ1Mθ1M = θ1M+1-θ1M and M = 1, 2, …, N-2) around the z-axis.

$${\mathbf{F^{\prime}}}^{M + 1} = \frac{{x_{Pt}^{M + 2} + iy_{Pt}^{M + 2} - \left( {x_{Pt}^{M + 1} + iy_{Pt}^{M + 1} } \right)}}{{e^{{i\Delta \theta_{1}^{M} }} }}.$$
(31)

According to Eqs. (30) and (31), we can obtain:

$${\mathbf{F}}^{M} - {\mathbf{F^{\prime}}}^{M + 1} = x_{Pt}^{M + 1} + iy_{Pt}^{M + 1} - \left( {x_{Pt}^{M} + iy_{Pt}^{M} } \right) - \frac{{x_{Pt}^{M + 2} + iy_{Pt}^{M + 2} - \left( {x_{Pt}^{M + 1} + iy_{Pt}^{M + 1} } \right)}}{{e^{{i\Delta \theta_{1}^{M} }} }}$$
(32)

Substituting Eq. (29) into (32) gives:

$$\begin{aligned} {\mathbf{F}}^{M} - {\mathbf{F^{\prime}}}^{M + 1} = & - r_{P} \sin \alpha_{Px} \left[ {\cos \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right) - \cos \left( {\theta_{2}^{M + 2} + \alpha_{Pyz} } \right)} \right]e^{{i\theta_{1}^{M + 1} }} + r_{P} \sin \alpha_{Px} \left[ {\cos \left( {\theta_{2}^{M} + \alpha_{Pyz} } \right) - \cos \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right)} \right]e^{{i\theta_{1}^{M} }} \\ + i\left\{ {\left( {S_{2}^{M + 1} - S_{2}^{M + 2} } \right)\sin \alpha_{12} - r_{P} \sin \alpha_{Px} \cos \alpha_{12} \left[ {\sin \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right) - \sin \left( {\theta_{2}^{M + 2} + \alpha_{Pyz} } \right)} \right]} \right\}e^{{i\theta_{1}^{M + 1} }} \\ - i\left\{ {\left( {S_{2}^{M} - S_{2}^{M + 1} } \right)\sin \alpha_{12} - r_{P} \sin \alpha_{Px} \cos \alpha_{12} \left[ {\sin \left( {\theta_{2}^{M} + \alpha_{Pyz} } \right) - \sin \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right)} \right]} \right\}e^{{i\theta_{1}^{M} }} \\ \end{aligned}$$
(33)

According to Eq. (23), the relative displacement of the coupler link Γj* can be expressed as:

$$\Gamma^{j * } = S_{2}^{M} - S_{2}^{M + 1} = - \frac{{z_{Pt}^{M} - z_{Pt}^{M + 1} + r_{P} \sin \alpha_{Px} \sin \alpha_{12} \left[ {\sin \left( {\theta_{2}^{M} + \alpha_{Pyz} } \right) - \sin \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right)} \right]}}{{\cos \alpha_{12} }}\;{\text{and}}$$
(34)
$$S_{2}^{M} - S_{2}^{M + 1} = - \frac{{z_{Pt}^{M} - z_{Pt}^{M + 1} + r_{P} \sin \alpha_{Px} \sin \alpha_{12} \left[ {\sin \left( {\theta_{2}^{M} + \alpha_{Pyz} } \right) - \sin \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right)} \right]}}{{\cos \alpha_{12} }}$$
(35)
$$S_{2}^{M + 1} - S_{2}^{M + 2} = - \frac{{z_{Pt}^{M + 1} - z_{Pt}^{M + 2} + r_{P} \sin \alpha_{Px} \sin \alpha_{12} \left[ {\sin \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right) - \sin \left( {\theta_{2}^{M + 2} + \alpha_{Pyz} } \right)} \right]}}{{\cos \alpha_{12} }}.$$
(36)

Substituting Eqs. (35) and (36) into (33) gives:

$$\begin{gathered} {\mathbf{F}}^{M} - {\mathbf{F^{\prime}}}^{M + 1} + {\text{i}}\left( {z_{Pf}^{M + 1} - z_{Pf}^{M + 2} } \right)\tan \alpha_{12} e^{{i\theta_{1}^{M + 1} }} - {\text{i}}\left( {z_{Pf}^{M} - z_{Pf}^{M + 1} } \right)\tan \alpha_{12} e^{{i\theta_{1}^{M} }} = - r_{P} \sin \alpha_{Px} \left[ {\cos \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right) - \cos \left( {\theta_{2}^{M + 2} + \alpha_{Pyz} } \right)} \right]e^{{i\theta_{1}^{M + 1} }} \hfill \\ + r_{P} \sin \alpha_{Px} \left[ {\cos \left( {\theta_{2}^{M} + \alpha_{Pyz} } \right) - \cos \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right)} \right]e^{{i\theta_{1}^{M} }} \hfill \\ + i\left\{ { - r_{P} \sin \alpha_{Px} \sin \alpha_{12} \left[ {\sin \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right) - \sin \left( {\theta_{2}^{M + 2} + \alpha_{Pyz} } \right)} \right]\tan \alpha_{12} - r_{P} \sin \alpha_{Px} \cos \alpha_{12} \left[ {\sin \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right) - \sin \left( {\theta_{2}^{M + 2} + \alpha_{Pyz} } \right)} \right]} \right\}e^{{i\theta_{1}^{M + 1} }} \hfill \\ - i\left\{ { - r_{P} \sin \alpha_{Px} \sin \alpha_{12} \left[ {\sin \left( {\theta_{2}^{M} + \alpha_{Pyz} } \right) - \sin \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right)} \right]\tan \alpha_{12} - r_{P} \sin \alpha_{Px} \cos \alpha_{12} \left[ {\sin \left( {\theta_{2}^{M} + \alpha_{Pyz} } \right) - \sin \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right)} \right]} \right\}e^{{i\theta_{1}^{M} }} \hfill \\ \end{gathered}$$
(37)

According to Eq. (37), there are two unknowns in equation rPsinαPx and αPyz. To find αPyz, the following can be obtained:

$$\omega = \frac{{{\mathbf{F}}^{M} - {\mathbf{F^{\prime}}}^{M + 1} + {\text{i}}\left( {z_{Pf}^{M + 1} - z_{Pf}^{M + 2} } \right)\tan \alpha_{12} e^{{i\theta_{1}^{M + 1} }} - {\text{i}}\left( {z_{Pf}^{M} - z_{Pf}^{M + 1} } \right)\tan \alpha_{12} e^{{i\theta_{1}^{M} }} }}{{{\mathbf{F}}^{M + 1} - {\mathbf{F^{\prime}}}^{M + 2} + {\text{i}}\left( {z_{Pf}^{M + 2} - z_{Pf}^{M + 3} } \right)\tan \alpha_{12} e^{{i\theta_{1}^{M + 2} }} - {\text{i}}\left( {z_{Pf}^{M + 1} - z_{Pf}^{M + 2} } \right)\tan \alpha_{12} e^{{i\theta_{1}^{M + 1} }} }}.$$
(38)

According to the known parameters, only αPyz is unknown in Eq. (38). For direct expression, the objective mechanism size parameter αPyz can be expressed as:

$$\alpha_{Pyz} = - \arctan \left( {\frac{{\omega \tau_{1} - \upsilon_{1} }}{{\omega \tau_{2} - \upsilon_{2} }}} \right),$$
(39)

where

$$\upsilon_{1} = e^{{i\theta_{1}^{M + 1} }} \left[ {\left( {\cos \theta_{2}^{M + 2} - \cos \theta_{2}^{M + 1} } \right) + h\left( {\sin \theta_{2}^{M + 2} - \sin \theta_{2}^{M + 1} } \right)} \right] + e^{{i\theta_{1}^{M} }} \left[ {\left( {\cos \theta_{2}^{M} - \cos \theta_{2}^{M + 1} } \right) + h\left( {\sin \theta_{2}^{M} - \sin \theta_{2}^{M + 1} } \right)} \right],$$
$$\upsilon_{2} = e^{{i\theta_{1}^{M + 1} }} \left[ {\left( {\sin \theta_{2}^{M + 1} - \sin \theta_{2}^{M + 2} } \right) + h\left( {\cos \theta_{2}^{M + 2} - \cos \theta_{2}^{M + 1} } \right)} \right] + e^{{i\theta_{1}^{M} }} \left[ {\left( {\sin \theta_{2}^{M + 1} - \sin \theta_{2}^{M} } \right) + h\left( {\cos \theta_{2}^{M} - \cos \theta_{2}^{M + 1} } \right)} \right],$$
$$\tau_{1} = e^{{i\theta_{1}^{M + 2} }} \left[ {\left( {\cos \theta_{2}^{M + 3} - \cos \theta_{2}^{M + 2} } \right) + h\left( {\sin \theta_{2}^{M + 3} - \sin \theta_{2}^{M + 2} } \right)} \right] + e^{{i\theta_{1}^{M + 1} }} \left[ {\left( {\cos \theta_{2}^{M + 1} - \cos \theta_{2}^{M + 2} } \right) + h\left( {\sin \theta_{2}^{M + 1} - \sin \theta_{2}^{M + 2} } \right)} \right],$$
$$\tau_{2} = e^{{i\theta_{1}^{M + 2} }} \left[ {\left( {\sin \theta_{2}^{M + 2} - \sin \theta_{2}^{M + 3} } \right) + h\left( {\cos \theta_{2}^{M + 3} - \cos \theta_{2}^{M + 2} } \right)} \right] + e^{{i\theta_{1}^{M + 1} }} \left[ {\left( {\sin \theta_{2}^{M + 2} - \sin \theta_{2}^{M + 1} } \right) + h\left( {\cos \theta_{2}^{M + 1} - \cos \theta_{2}^{M + 2} } \right)} \right]\;\;{\text{and}}$$

\(h = i\sin \alpha_{12} \tan \alpha_{12} + i\cos \alpha_{12} .\)

Similarly, αQyz can be determined. Substituting αPyz into Eq. (37), rPsinαPx can be expressed as:

$$r_{P} \sin \alpha_{Px} = \frac{{{\mathbf{F}}^{M} - {\mathbf{F^{\prime}}}^{M + 1} + {\text{i}}\left( {z_{Pt}^{M + 1} - z_{Pt}^{M + 2} } \right)\tan \alpha_{12} e^{{i\theta_{1}^{M + 1} }} - {\text{i}}\left( {z_{Pt}^{M} - z_{Pt}^{M + 1} } \right)\tan \alpha_{12} e^{{i\theta_{1}^{M} }} }}{{\beta_{1} + \beta_{2} }},$$
(40)

where

$$\beta_{1} = \left[ {\varpi_{1} \left( {\cos \theta_{2}^{M} - \cos \theta_{2}^{M + 1} } \right) - \varpi_{2} \left( {\sin \theta_{2}^{M} - \sin \theta_{2}^{M + 1} } \right)} \right]e^{{i\theta_{1}^{M} }} ,$$
$$\beta_{2} = \left[ { - \varpi_{1} \left( {\cos \theta_{2}^{M + 1} - \cos \theta_{2}^{M + 2} } \right) + \varpi_{2} \left( {\sin \theta_{2}^{M + 1} - \sin \theta_{2}^{M + 2} } \right)} \right]e^{{i\theta_{1}^{M + 1} }} ,$$
$$\varpi_{1} = \cos \alpha_{Pyz} + \left( {i\sin \alpha_{12} \tan \alpha_{12} + i\cos \alpha_{12} } \right)\sin \alpha_{Pyz} \;\;{\text{and}}$$
$$\varpi_{2} = \sin \alpha_{Pyz} - \left( {i\sin \alpha_{12} \tan \alpha_{12} + i\cos \alpha_{12} } \right)\cos \alpha_{Pyz} .$$

Similarly, rQsinαQx can be determined.

Appendix 2

Substituting the obtained mechanism size parameters rPsinαPx and αPyz into Eq. (30) gives:

$$\begin{aligned} {\mathbf{F}}^{M} = & - \left[ {r_{P} \sin \alpha_{Px} \cos \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right) + a_{12} } \right]e^{{i\theta_{1}^{M + 1} }} - i\left[ {\left( {r_{P} \cos \alpha_{Px} - S_{2}^{M + 1} } \right)\sin \alpha_{12} + r_{P} \sin \alpha_{Px} \sin \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right)\cos \alpha_{12} } \right]e^{{i\theta_{1}^{M + 1} }} \\ + \left[ {r_{P} \sin \alpha_{Px} \cos \left( {\theta_{2}^{M} + \alpha_{Pyz} } \right) + a_{12} } \right]e^{{i\theta_{1}^{M} }} + i\left[ {\left( {r_{P} \cos \alpha_{Px} - S_{2}^{M} } \right)\sin \alpha_{12} + r_{P} \sin \alpha_{Px} \sin \left( {\theta_{2}^{M} + \alpha_{Pyz} } \right)\cos \alpha_{12} } \right]e^{{i\theta_{1}^{M} }} \\ \end{aligned}$$
(41)

Based on Eq. (41), rPcosαPx can be solved as follows:

$$r_{P} \cos \alpha_{Px} = \frac{{{\mathbf{F}}^{M} + \phi_{1} + \phi_{2} }}{{\left[ {e^{{i\theta_{1}^{M} }} - e^{{i\theta_{1}^{M + 1} }} } \right]i\sin \alpha_{12} }},$$
(42)

where

$$\phi_{1} = \left[ {r_{P} \sin \alpha_{Px} \left[ {\cos \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right) + \sin \left( {\theta_{2}^{M + 1} + \alpha_{Pyz} } \right)i\cos \alpha_{12} } \right] + a_{12} - S_{2}^{M + 1} i\sin \alpha_{12} } \right]e^{{i\theta_{1}^{M + 1} }} \;\;{\text{and}}$$
$$\phi_{2} = - \left[ {r_{P} \sin \alpha_{Px} \left[ {\cos \left( {\theta_{2}^{M} + \alpha_{Pyz} } \right) + \sin \left( {\theta_{2}^{M} + \alpha_{Pyz} } \right)i\cos \alpha_{12} } \right] + a_{12} - S_{2}^{M} i\sin \alpha_{12} } \right]e^{{i\theta_{1}^{M} }} .$$

Similarly, rQcosαQx can be solved. rP, rQ, αPx and αQx can be determined according to Eqs. (40) and (42).

According to Eqs. (11) and (12), the basic dimensional parameters of the mechanism and the installation angle parameters are obtained; then, the installation position parameters of the objective mechanism spatial RCCC can be represented as follows:

$$O_{x} = - [r_{P} \sin \alpha_{Px} \cos (\theta_{2}^{n} + \alpha_{Pyz} ) + a_{12} ]\cos \theta_{1}^{n} + [(r_{P} \cos \alpha_{Px} - S_{2}^{n} )\sin \alpha_{12} + r_{P} \sin \alpha_{Px} \cos \alpha_{12} \sin (\theta_{2}^{n} + \alpha_{Pyz} )]\sin \theta_{1}^{n} - x_{Pt}^{n} ,$$
(43)
$$O_{y} = - [r_{P} \sin \alpha_{Px} \cos (\theta_{2}^{n} + \alpha_{Pyz} ) + a_{12} ]\sin \theta_{1}^{n} - [(r_{P} \cos \alpha_{Px} - S_{2}^{n} )\sin \alpha_{12} + r_{P} \sin \alpha_{Px} \cos \alpha_{12} \sin (\theta_{2}^{n} + \alpha_{Pyz} )]\cos \theta_{1}^{n} - y_{Pt}^{n} \;\;{\text{and}}$$
(44)
$$O_{z} = \left( {r_{P} \cos \alpha_{Px} - S_{2}^{n} } \right)\cos \alpha_{12} - r_{P} \sin \alpha_{Px} \sin \left( {\theta_{2}^{n} + \alpha_{Pyz} } \right)\sin \alpha_{12} - S_{1} - z_{Pt}^{n} .$$
(45)

Appendix 3

See Fig. 

Fig. 7
figure 7

The flowchart of reduced dimensional synthesis method

7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Qu, X., Qin, T. et al. Dimensional synthesis of motion generation of a spatial RCCC mechanism. J Braz. Soc. Mech. Sci. Eng. 46, 41 (2024). https://doi.org/10.1007/s40430-023-04566-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04566-3

Keywords

Navigation