Skip to main content
Log in

Assessment of RANS-type turbulence models for CFD simulations of horizontal axis wind turbines at moderate Reynolds numbers

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Nowadays, numerical simulations of wind turbines based on the Reynolds-averaged Navier–Stokes (RANS) formulation are becoming, in terms of computational cost, increasingly more viable tools for geometry optimization and design. Nevertheless, a judicious use of RANS-type methods is still required to guarantee acceptable accuracy at manageable computational cost. Here, we assess the accuracy and cost of several well-known turbulence models (Spalart–Allmaras, \(k-\varepsilon\), \(k-\omega\) SST, along with transitional modelling) with and without a zigzag tape modelling for a representative horizontal axis wind turbine within a range of moderate Reynolds numbers (\(\textrm{Re} \approx 3 \times 10^5\) to \(8 \times 10^5\)). This range allowed for the assessment of turbulence models under various complex flow conditions. Significant differences in performance have been found and, for a notable portion of the test cases, the \(k-\varepsilon\) model was able to deliver good results (similar to \(k-\omega\) SST results) with a considerably coarser mesh. This suggests that \(k-\varepsilon\), although often recognized as less accurate than \(k-\omega\) SST, might actually be more efficient for wind turbine simulations. Also, although the best results came only with a coupled transition model which required a higher computational cost, this increase in cost is not exceedingly high and might allow for this model’s usage in later design stages. Accordingly, the present study is a valuable source for future wind turbine simulations and design and we hope that it fosters further developments in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davis SJ, Lewis NS, Shaner M, Aggarwal S, Arent D, Azevedo IL, Benson SM, Bradley T, Brouwer J, Chiang Y-M, Clack CTM, Cohen A, Doig S, Edmonds J, Fennell P, Field CB, Hannegan B, Hodge B-M, Hoffert MI, Ingersoll E, Jaramillo P, Lackner KS, Mach KJ, Mastrandrea M, Ogden J, Peterson PF, Sanchez DL, Sperling D, Stagner J, Trancik JE, Yang C-J, Caldeira K (2018) Net-zero emissions energy systems. Science 360(6396):9793. https://doi.org/10.1126/science.aas9793

    Article  Google Scholar 

  2. Jenkins JD, Luke M, Thernstrom S (2018) Getting to zero carbon emissions in the electric power sector. Joule 2(12):2498–2510. https://doi.org/10.1016/j.joule.2018.11.013

    Article  Google Scholar 

  3. Pan J (2021) Lowering the carbon emissions peak and accelerating the transition towards net zero carbon. Chin J Urban Environ Stud 09(03):2150013. https://doi.org/10.1142/S2345748121500135

    Article  Google Scholar 

  4. Moshfeghi M, Hur N (2020) Power generation enhancement in a horizontal axis wind turbine blade using split blades. J Wind Eng Ind Aerodyn 206:104352. https://doi.org/10.1016/j.jweia.2020.104352

    Article  Google Scholar 

  5. Zhang Y-N, Cao H-J, Zhang M-M (2021) Investigation of leading-edge protuberances for the performance improvement of thick wind turbine airfoil. J Wind Eng Ind Aerodyn 217:104736. https://doi.org/10.1016/j.jweia.2021.104736

    Article  Google Scholar 

  6. Rodriguez CV, Celis C (2022) Design optimization methodology of small horizontal axis wind turbine blades using a hybrid CFD/BEM/GA approach. J Braz Soc Mech Sci Eng 44:25. https://doi.org/10.1007/s40430-022-03561-4

    Article  Google Scholar 

  7. Layeghmand K, Ghiasi Tabari N, Zarkesh M (2020) Improving efficiency of Savonius wind turbine by means of an airfoil-shaped deflector. J Braz Soc Mech Sci Eng 42:12. https://doi.org/10.1007/s40430-020-02598-7

    Article  Google Scholar 

  8. Fatahian H, Hosseini E, Eshagh Nimvari M, Fatahian R, Fallah Jouybari N, Fatahian E (2022) Performance enhancement of Savonius wind turbine using a nanofiber-based deflector. J Braz Soc Mech Sci Eng 44:15. https://doi.org/10.1007/s40430-022-03407-z

    Article  Google Scholar 

  9. Nawar MAA, Hameed HSA, Ramadan A, Attai YA, Mohamed MH (2021) Experimental and numerical investigations of the blade design effect on Archimedes spiral wind turbine performance. Energy 223:120051. https://doi.org/10.1016/j.energy.2021.120051

    Article  Google Scholar 

  10. Kamal AM, Nawar MAA, Attai YA, Mohamed MH (2022) Blade design effect on Archimedes spiral wind turbine performance: experimental and numerical evaluations. Energy 250:123892. https://doi.org/10.1016/j.energy.2022.123892

    Article  Google Scholar 

  11. Refaie AG, Hameed HSA, Nawar MAA, Attai YA, Mohamed MH (2022) Comparative investigation of the aerodynamic performance for several shrouded Archimedes spiral wind turbines. Energy 239:122295. https://doi.org/10.1016/j.energy.2021.122295

    Article  Google Scholar 

  12. Win Naung S, Rahmati M, Farokhi H (2021) Nonlinear frequency domain solution method for aerodynamic and aeromechanical analysis of wind turbines. Renew Energy 167:66–81. https://doi.org/10.1016/j.renene.2020.11.046

    Article  Google Scholar 

  13. Win Naung S, Nakhchi ME, Rahmati M (2021) High-fidelity CFD simulations of two wind turbines in arrays using nonlinear frequency domain solution method. Renew Energy 174:984–1005. https://doi.org/10.1016/j.renene.2021.04.067

    Article  Google Scholar 

  14. He J, Jin X, Xie S, Cao L, Wang Y, Lin Y, Wang N (2020) CFD modeling of varying complexity for aerodynamic analysis of h-vertical axis wind turbines. Renew Energy 145:2658–2670. https://doi.org/10.1016/j.renene.2019.07.132

    Article  Google Scholar 

  15. Gómez-Iradi S, Steijl R, Barakos GN (2009) Development and Validation of a CFD technique for the aerodynamic analysis of HAWT. J Solar Energy Eng. https://doi.org/10.1115/1.3139144

  16. Rezaeiha A, Montazeri H, Blocken B (2019) On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines. Energy 180:838–857. https://doi.org/10.1016/j.energy.2019.05.053

    Article  Google Scholar 

  17. Burmester S, Vaz G, el Moctar O (2020) Towards credible CFD simulations for floating offshore wind turbines. Ocean Eng 209:107237. https://doi.org/10.1016/j.oceaneng.2020.107237

    Article  Google Scholar 

  18. Boorsma K, Schepers JG (2015) New Mexico experiment, description of experimental setup. Technical report, ECN-X-15-093 (v1), Petten: Energy Research Center of the Netherlands

  19. Hand M, Simms D, Fingersh L, Jager D, Cotrell J, Schreck S, Larwood S (2001) Unsteady aerodynamics experiment PHASE VI: wind tunnel test configurations and available data campaigns. Technical report, National Renewable Energy Lab., Golden, CO (US)

  20. Li S, Caracoglia L (2020) Experimental error examination and its effects on the aerodynamic properties of wind turbine blades. J Wind Eng Ind Aerodyn 206:104357. https://doi.org/10.1016/j.jweia.2020.104357

    Article  Google Scholar 

  21. Plaza B, Bardera R, Visiedo S (2015) Comparison of BEM and CFD results for MEXICO rotor aerodynamics. J Wind Eng Ind Aerodyn 145:115–122. https://doi.org/10.1016/j.jweia.2015.05.005

    Article  Google Scholar 

  22. Réthoré P-E, Sørensen N, Zahle F, Bechmann A, Madsen H (2011) MEXICO Wind Tunnel and Wind Turbine modelled in CFD. https://doi.org/10.2514/6.2011-3373

  23. Sørensen NN, Zahle F, Boorsma K, Schepers G (2016) CFD computations of the second round of MEXICO rotor measurements. J Phys Conf Ser 753:022054. https://doi.org/10.1088/1742-6596/753/2/022054

    Article  Google Scholar 

  24. Bechmann A, Sørensen NN, Zahle F (2011) CFD simulations of the MEXICO rotor. Wind Energy 14:677–689. https://doi.org/10.1002/we.450

    Article  Google Scholar 

  25. Qian Y, Zhang Z, Wang T (2018) Comparative study of the aerodynamic performance of the new MEXICO rotor under yaw conditions. Energies 11(4):833. https://doi.org/10.3390/en11040833

    Article  Google Scholar 

  26. Garcia-Ribeiro D, Flores-Mezarina JA, Bravo-Mosquera PD, Cerón-Muñoz HD (2021) Parametric CFD analysis of the taper ratio effects of a winglet on the performance of a horizontal axis wind turbine. Sustain Energy Technol Assess 47:101489. https://doi.org/10.1016/j.seta.2021.101489

    Article  Google Scholar 

  27. Dias MMG, Ramirez Camacho RG (2022) Optimization of NREL phase VI wind turbine by introducing blade sweep, using CFD integrated with genetic algorithms. J Braz Soc Mech Sci Eng 44:19. https://doi.org/10.1007/s40430-021-03357-y

    Article  Google Scholar 

  28. Moshfeghi M, Song YJ, Xie YH (2012) Effects of near-wall grid spacing on SST-K-\(\omega\) model using NREL phase VI horizontal axis wind turbine. J Wind Eng Ind Aerodyn 107:94–105. https://doi.org/10.1016/j.jweia.2012.03.032

    Article  Google Scholar 

  29. Bai C-J, Wang W-C (2016) Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs). Renew Sustain Energy Rev 63:506–519. https://doi.org/10.1016/j.rser.2016.05.078

    Article  Google Scholar 

  30. Zhong W, Tang H, Wang T, Zhu C (2018) Accurate RANS simulation of wind turbine stall by turbulence coefficient calibration. Appl Sci 8(9):1444. https://doi.org/10.3390/app8091444

    Article  Google Scholar 

  31. Farhan A, Hassanpour A, Burns A, Motlagh YG (2019) Numerical study of effect of winglet planform and airfoil on a horizontal axis wind turbine performance. Int J Anal Exp Modal Anal 131:1255–1273. https://doi.org/10.1016/j.renene.2018.08.017

    Article  Google Scholar 

  32. de Oliveira M, Puraca RC, Carmo BS (2022) Blade-resolved numerical simulations of the NREL offshore 5 mw baseline wind turbine in full scale: a study of proper solver configuration and discretization strategies. Energy 254:124368. https://doi.org/10.1016/j.energy.2022.124368

    Article  Google Scholar 

  33. Shourangiz-Haghighi A, Haghnegahdar MA, Wang L, Mussetta M, Kolios A, Lander M (2020) State of the art in the optimisation of wind turbine performance using CFD. Arch Comput Methods Eng 27(2):413–431. https://doi.org/10.1007/s11831-019-09316-0

    Article  Google Scholar 

  34. AbdelSalam AM, Ramalingam V (2014) Wake prediction of horizontal-axis wind turbine using full-rotor modeling. J Wind Eng Ind Aerodyn 124:7–19. https://doi.org/10.1016/j.jweia.2013.11.005

    Article  Google Scholar 

  35. Zhu B, Sun X, Wang Y, Huang D (2017) Performance characteristics of a horizontal axis wind turbine with fusion winglet. Energy 120:431–440. https://doi.org/10.1016/j.energy.2016.11.094

    Article  Google Scholar 

  36. de Oliveira M, Puraca RC, Carmo BS (2022) Blade-resolved numerical simulations of the NREL offshore 5 mw baseline wind turbine in full scale: a study of proper solver configuration and discretization strategies. Energy 254:124368. https://doi.org/10.1016/j.energy.2022.124368

    Article  Google Scholar 

  37. Ji B, Zhong K, Xiong Q, Qiu P, Zhang X, Wang L (2022) CFD simulations of aerodynamic characteristics for the three-blade NREL Phase VI wind turbine model. Energy 249:123670. https://doi.org/10.1016/j.energy.2022.123670

    Article  Google Scholar 

  38. Hansen TH, Mühle F (2018) Winglet optimization for a model-scale wind turbine. Wind Energy 21:634–649. https://doi.org/10.1002/we.2183

    Article  Google Scholar 

  39. Bouhelal A, Smaili A, Guerri O, Masson C (2018) Numerical investigation of turbulent flow around a recent horizontal axis wind turbine using low and high Reynolds models. J Appl Fluid Mech 11(1):151–164. https://doi.org/10.29252/jafm.11.01.28074

    Article  Google Scholar 

  40. Lin Y-T, Chiu P-H, Huang C-C (2017) An experimental and numerical investigation on the power performance of 150 kw horizontal axis wind turbine. Renew Energy 113:85–93. https://doi.org/10.1016/j.renene.2017.05.065

    Article  Google Scholar 

  41. Thumthae C, Chitsomboon T (2009) Optimal angle of attack for untwisted blade wind turbine. Renew Energy 34(5):1279–1284. https://doi.org/10.1016/j.renene.2008.09.017

    Article  Google Scholar 

  42. Rahmatian MA, Hashemi Tari P, Mojaddam M, Majidi S (2022) Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine. Energy 245:123267. https://doi.org/10.1016/j.energy.2022.123267

    Article  Google Scholar 

  43. Tachos NS, Filios AE, Margaris DP (2010) A comparative numerical study of four turbulence models for the prediction of horizontal axis wind turbine flow. Proc Inst Mech Eng C J Mech Eng Sci 224(9):1973–1979. https://doi.org/10.1243/09544062JMES1901

    Article  Google Scholar 

  44. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8):1598–1605. https://doi.org/10.2514/3.12149

    Article  Google Scholar 

  45. ANSYS: ANSYS CFX - Solver Theory Guide, Release 14.0. ANSYS Inc., Pennsylvania, USA (2014)

  46. Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21(11):1525–1532. https://doi.org/10.2514/3.8284

    Article  MATH  Google Scholar 

  47. Majumdar S (1988) Role of underrelaxation in momentum interpolation for calculation of flow with nonstaggered grids. Numer Heat Transf 13(1):125–132. https://doi.org/10.1080/10407788808913607

    Article  Google Scholar 

  48. Anderson JD (2010) Fundamentals of Aerodynamics. McGraw-Hill Education, New York

    Google Scholar 

  49. Çengel YA, Cimbala JM (2010) Fluid mechanics: fundamentals and applications. McGraw Hill Education, New York

    Google Scholar 

  50. Yan C, Archer CL (2018) Assessing compressibility effects on the performance of large horizontal-axis wind turbines. Appl Energy 212:33–45. https://doi.org/10.1016/j.apenergy.2017.12.020

    Article  Google Scholar 

  51. Launder BE, Sharma BI (1974) Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett Heat Mass Transf 1(2):131–137. https://doi.org/10.1016/0094-4548(74)90150-7

    Article  Google Scholar 

  52. Spalart P, Allmaras S (1992) A one-equation turbulence model for aerodynamic flows. In: 30th Aerospace sciences meeting and exhibit (1992), p 439. https://doi.org/10.2514/6.1992-439

  53. Menter FR, Langtry RB, Likki SR, Suzen YB, Huang PG, Völker S (2006) A correlation-based transition model using local variables—part I: model formulation. J Turbomach 128(3):413–422. https://doi.org/10.1115/1.2184352

    Article  Google Scholar 

  54. Langtry RB, Menter FR, Likki SR, Suzen YB, Huang PG, Völker S (2006) A correlation-based transition model using local variables—part II: test cases and industrial applications. J Turbomach 128(3):423–434. https://doi.org/10.1115/1.2184353

    Article  Google Scholar 

  55. Jones WP, Launder BE (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15(2):301–314. https://doi.org/10.1016/0017-9310(72)90076-2

    Article  Google Scholar 

  56. Pope SB (1978) An explanation of the turbulent round-jet/plane-jet anomaly. AIAA J 16(3):279–281. https://doi.org/10.2514/3.7521

    Article  Google Scholar 

  57. Hanjalić K, Launder BE (1980) Sensitizing the dissipation equation to irrotational strains. J Fluids Eng 102(1):34–40. https://doi.org/10.1115/1.3240621

    Article  Google Scholar 

  58. Bardina J, Ferziger J, Reynolds W (1983) Improved turbulence models based on large-eddy simulation of homogeneous, incompressible, turbulent flows. Stanford Report TF-19 194:53–63

  59. Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1(1):3–51. https://doi.org/10.1007/BF01061452

    Article  MathSciNet  MATH  Google Scholar 

  60. Smith LM, Reynolds WC (1992) On the Yakhot–Orszag renormalization group method for deriving turbulence statistics and models. Phys Fluids A 4(2):364–390. https://doi.org/10.1063/1.858310

    Article  MathSciNet  Google Scholar 

  61. Smith LM, Woodruff SL (1998) Renormalization-group analysis of turbulence. Annu Rev Fluid Mech 30(1):275–310. https://doi.org/10.1146/annurev.fluid.30.1.275

    Article  MathSciNet  MATH  Google Scholar 

  62. Rodi W, Mansour NN (1993) Low Reynolds number \(k -\varepsilon\) modelling with the aid of direct simulation data. J Fluid Mech 250:509–529. https://doi.org/10.1017/S0022112093001545

    Article  MATH  Google Scholar 

  63. Durbin PA (1991) Near-wall turbulence closure modeling without damping functions. Theoret Comput Fluid Dyn 3(1):1–13. https://doi.org/10.1007/BF00271513

    Article  MATH  Google Scholar 

  64. Elfarra MA, Sezer-Uzol N, Akmandor IS (2014) NREL VI rotor blade: numerical investigation and winglet design and optimization using CFD. Wind Energy 17(4):605–626. https://doi.org/10.1002/we.1593

    Article  Google Scholar 

  65. Sanderse B, van der Pijl SP, Koren B (2011) Review of computational fluid dynamics for wind turbine wake aerodynamics. Wind Energy 14(7):799–819. https://doi.org/10.1002/we.458

    Article  Google Scholar 

  66. Antonini EGA, Romero DA, Amon CH (2018) Analysis and modifications of turbulence models for wind turbine wake simulations in atmospheric boundary layers. J SolEnergy Eng 140(3):031007–113. https://doi.org/10.1115/1.4039377

    Article  Google Scholar 

  67. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511840531

    Book  MATH  Google Scholar 

  68. Bardina JE, Huang PG, Coakley TJ (1997) Turbulence modeling validation, testing, and development. NASA Tech Memo 110446:147

    Google Scholar 

  69. Wilcox DC et al (1998) Turbulence modeling for CFD, vol 2. DCW industries, La Cañada

    Google Scholar 

  70. Allmaras SR, Johnson FT (2012) Modifications and clarifications for the implementation of the Spalart–Allmaras turbulence model. In: Seventh international conference on computational fluid dynamics (ICCFD7), vol 1902. Big Island, HI

  71. Shur ML, Strelets MK, Travin AK, Spalart PR (2000) Turbulence modeling in rotating and curved channels: assessing the Spalart–Shur correction. AIAA J 38(5):784–792. https://doi.org/10.2514/2.1058

    Article  Google Scholar 

  72. Dacles-Mariani J, Kwak D, Zilliac G (1999) On numerical errors and turbulence modeling in tip vortex flow prediction. Int J Numer Methods Fluids 30(1):65–82. https://doi.org/10.1002/(SICI)1097-0363(19990515)30:1<65::AID-FLD839>3.0.CO;2-Y

    Article  MATH  Google Scholar 

  73. Spalart PR, Garbaruk AV (2020) Correction to the Spalart–Allmaras turbulence model, providing more accurate skin friction. AIAA J 58(5):1903–1905. https://doi.org/10.2514/1.J059489

    Article  Google Scholar 

  74. Zhang R-K, Wu J-Z (2012) Aerodynamic characteristics of wind turbine blades with a sinusoidal leading edge. Wind Energy 15(3):407–424. https://doi.org/10.1002/we.479

    Article  Google Scholar 

  75. Wilcox DC (1988) Reassessment of the scale-determining equation for advanced turbulence models. AIAA J 26(11):1299–1310. https://doi.org/10.2514/3.10041

    Article  MathSciNet  MATH  Google Scholar 

  76. Wilcox DC (2006) Turbulence modeling for CFD, 3rd edn. DCW industries, La Cañada

    Google Scholar 

  77. Cazalbou JB, Spalart PR, Bradshaw P (1994) On the behavior of two-equation models at the edge of a turbulent region. Phys Fluids 6(5):1797–1804. https://doi.org/10.1063/1.868241

    Article  MATH  Google Scholar 

  78. Durbin PA, Reif BP (2011) Statistical theory and modeling for turbulent flows. John Wiley & Sons, New Jersey

    MATH  Google Scholar 

  79. Ribeiro DG (2020) Análise paramétrica da geometria de winglets na eficiência aerodinâmica para uma pá de gerador eólico de eixo horizontal. Master’s thesis, Escola de Engenharia de São Carlos - Universidade de São Paulo (September (in portuguese)). https://doi.org/10.11606/D.18.2020.tde-22102020-104551

  80. Reddy SR, Dulikravich GS, Sobieczky H, Gonzalez M (2019) Bladelets—winglets on blades of wind turbines: a multiobjective design optimization study. J SolEnergy Eng 141(6):061003. https://doi.org/10.1115/1.4043657

    Article  Google Scholar 

  81. Ebrahimi A, Mardani R (2018) Tip-vortex noise reduction of a wind turbine using a winglet. J Energy Eng 144(1):04017076. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000517

    Article  Google Scholar 

  82. Abdelsalam AM, Boopathi K, Gomathinayagam S, Hari Krishnan Kumar SS, Ramalingam V (2014) Experimental and numerical studies on the wake behavior of a horizontal axis wind turbine. J Wind Eng Ind Aerodyn 128:54–65. https://doi.org/10.1016/j.jweia.2014.03.002

    Article  Google Scholar 

  83. Shen WZ, Zhu WJ, Sørensen JN (2012) Actuator line/Navier–Stokes computations for the MEXICO rotor: comparison with detailed measurements. Wind Energy 15(5):811–825. https://doi.org/10.1002/we.510

    Article  Google Scholar 

  84. Sarlak H, Nishino T, Martínez-Tossas LA, Meneveau C, Sørensen JN (2016) Assessment of blockage effects on the wake characteristics and power of wind turbines. Renew Energy 93:340–352. https://doi.org/10.1016/j.renene.2016.01.101

    Article  Google Scholar 

  85. Schepers JG, Boorsma K, Munduate X (2014) Final results from Mexnext-I: analysis of detailed aerodynamic measurements on a 4.5 m diameter rotor placed in the large German Dutch wind tunnel DNW. J Phys Conf Ser 555:012089. https://doi.org/10.1088/1742-6596/555/1/012089

    Article  Google Scholar 

  86. Lobo BA, Boorsma K, Schaffarczyk AP (2018) Investigation into boundary layer transition on the MEXICO blade 1037:052020. https://doi.org/10.1088/1742-6596/1037/5/052020

    Article  Google Scholar 

  87. Simms DA, Hand MM, Fingersh LJ, Jager DW (1999) Unsteady aerodynamics experiment phases II–IV test configurations and available data campaigns. Technical report, National Renewable Energy Lab., Golden, CO (US)

  88. Hashem I, Hafiz AA, Mohamed MH (2020) Characterization of aerodynamic performance of wind-lens turbine using high-fidelity CFD simulations. Front Energy. https://doi.org/10.1007/s11708-020-0713-0

    Article  Google Scholar 

  89. Pinto ML, Franzini GR, Simos AN (2020) A CFD analysis of NREL’s 5MW wind turbine in full and model scales. J Ocean Eng Mar Energy 6(2):211–220. https://doi.org/10.1007/s40722-020-00162-y

    Article  Google Scholar 

  90. Boorsma K, Schepers J (2014) New MEXICO experiment. Preliminary overview with initial validation. Technical Report ECN-E-14-048 ECN

  91. Yu G, Shen X, Zhu X, Du Z (2011) An insight into the separate flow and stall delay for HAWT. Renew Energy 36(1):69–76. https://doi.org/10.1016/j.renene.2010.05.021

    Article  Google Scholar 

  92. Leschziner M (2015) Statistical Turbulence modelling for fluid dynamics demystified: an introductory text for graduate engineering students. World Scientific, Singapore

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil—Finance Code 001) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil—Process number 141515/2021-0). The authors are also thankful to Pedro D. Bravo-Mosquera regarding the use of computational resources and productive technical discussions. Regarding the multiple data used as reference for the wind turbine simulations, the authors remark that data were supplied by the consortium that developed the EU FP5 project MEXICO: “Model rotor EXperiments In COntrolled conditions”. The consortium received additional support to perform the New Mexico measurements from EU projects ESWIRP and INNWIND.EU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Garcia-Ribeiro.

Ethics declarations

Conflict of interest

The authors declare they have no competing financial interests or personal relationships that might influence the work reported in this paper.

Additional information

Technical Editor: William Wolf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: A \({\mathcal {L}}^2\)-norm of the residual values

The residual values of the velocity components, turbulent kinetic energy, dissipation rate, eddy viscosity, intermittency and transition onset Reynolds number at the converged condition of each simulation without the zigzag tape modelling are presented in Table 12 for repeatability purposes.

Table 12 \({\mathcal {L}}^2\)-norm of velocity components, turbulent kinetic energy, dissipation rate and eddy viscosity at the convergence condition

Appendix B: Zigzag tape modelling’s results

The results of zigzag tape modelling are presented only for the \(k-\omega\) SST coupled with the \(\gamma -\textrm{Re}_{\theta t}\) model in Table 13 because it is the model that presented the better agreements with the experimental results, whereas the other studied cases actually worsened the accuracy as already shown in Sect. 5.2.

Table 13 Results for \(k-\omega\) SST coupled with \(\gamma - \textrm{Re}_{\theta t}\)

Appendix C: Pressure coefficient distributions

Figures 10 and 11 show, respectively, the pressure coefficient distributions for \(U_\infty =10.05\) m/s and \(U_\infty =15.06\) m/s, both at the same five radial positions presented in Fig. 7. One can see good agreements at \(r/R = 0.60\), 0.82 and 0.92 for both wind speeds. This is related to the fact that the local pressure sensors’ ranges are not sufficient to resolve the actual physics at low wind speeds [23, 39, 90]. In addition, less accuracy is found for the suction side, besides the greatest discrepancies at \(r/R = 0.25\) and 0.35, and \(U_\infty = 10.05\) m/s. From this figures, one could conclude that the torque and thrust calculated by the simulations with any of the three turbulence models would have very similar values, which is misleading due to what Sect. 5.1 showed.

Fig. 10
figure 10

Pressure coefficient distribution along the (normalized) chord-wise direction at five sections (from \(r/R = 0.25\) to 0.92) for case \(U_{\infty } = 10.05\) m/s. Experimental data from [18]. For interpretation of the colours in the figure, the reader is referred to the digital version of this paper

Fig. 11
figure 11

Pressure coefficient distribution along the (normalized) chord-wise direction at five sections (from \(r/R = 0.25\) to 0.92) for case \(U_{\infty } = 15.06\) m/s. Experimental data from [18]. For interpretation of the colours in the figure, the reader is referred to the digital version of this paper

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Ribeiro, D., Malatesta, V., Moura, R.C. et al. Assessment of RANS-type turbulence models for CFD simulations of horizontal axis wind turbines at moderate Reynolds numbers. J Braz. Soc. Mech. Sci. Eng. 45, 566 (2023). https://doi.org/10.1007/s40430-023-04488-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04488-0

Keywords

Navigation