Skip to main content
Log in

Slow motion of couple stress fluid past a solid sphere in a virtual cell: slip effect

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The steady axisymmetric flow of an incompressible couple stress fluid past a solid sphere located at the center of a hypothetical spherical cavity is analytically investigated using the cell model technique. Here we assume that the inner sphere is solid and the outer one is fictitious. On the surface of the inner sphere, boundary conditions are the vanishing of normal velocity, slip boundary condition, and nil couple stress condition have been used. On the fictitious surface of the outer spherical cell, boundary conditions are Happel’s model, Kuwabara’s model, Kvashnin’s model, and Cunningham’s model applied. The couple stress fluid flow is governed in the cavity. The drag force and the wall correction factor acting on a slip sphere are evaluated. In special cases, we have discussed the drag force acting on the slip sphere in an unbounded case and the wall correction factor experienced by viscous fluid for all four models in a bounded case. Variations of the wall correction factor versus separation parameter for different values of the couple stress and slip parameters with a fixed value of the couple stress viscosity ratio parameter are presented graphically. Here we have also discussed the results of consistent couple stress theory. The tabulated results show that the wall correction factor increases monotonically as the couple stress viscosity ratio, slip, and separation parameters increases. It has the largest values when an interaction between the spherical cavity and inner sphere is very close and the smallest values when they are far from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

Abbreviations

\(\vec{q}\) :

Velocity vector \((\rm{ms}^{-1})\)

p :

Pressure \((\rm{Nm}^{-2})\)

\(m_{ij}\) :

Couple stress tensor

m :

One-third of the trace of couple stress tensor

\(e_{ijk}\) :

Permutation tensor

\(d_{ij}\) :

Rate of deformation tensor

r :

Radial distance from the z-axis to the fixed point (m)

a :

Radius of an inner sphere (m)

U :

Uniform velocity \((ms^{-1})\)

\(q_{r}\), \(q_{\theta }\) :

Components of fluid velocity \((\rm{ms}^{-1})\)

\(I_{1/2}(*)\), \(K_{1/2}(*)\) :

Modified Bessel’s functions of the first and second kind of order 1/2

\(I_{3/2}(*)\), \(K_{3/2}(*)\) :

Modified Bessel’s functions of the first and second kind of order 3/2

F :

Drag force (N)

\(\eta\), \(\eta {'}\) :

Couple stress viscosity coefficients (Ns)

\(\mu\) :

Viscosity coefficient \((\rm{Nsm}^{-2})\)

\(\lambda\) :

Dimensionless couple stress parameter

\((r,\theta ,\phi )\) :

Spherical coordinate system

\(\delta _{ij}\) :

Kronecker delta

\(\omega _{i,j}\), \(\omega _{j,i}\) :

Spin tensor

\(t_{ij}\) :

Stress tensor

\(t_{rr}\) :

Normal stress \((\rm{Nm}^{-2})\)

\(t_{r\theta }\) :

Tangential stress \((\rm{Nm}^{-2})\)

\(\omega\) :

Spin vector \((s^{-1})\)

\(\psi\) :

Stream function \((\rm{m}^{3} s^{-1})\)

\(\beta\) :

Coefficient of sliding friction

\(\beta _{1}\) :

Dimensionless slip parameter

\(\displaystyle {\tau =\frac{\eta {'}}{\eta }}\) :

Couple stress viscosity ratio

, :

Differentiation with respect to variable

\(\nabla\) :

Gradient operator \((\rm{m}^{-1})\)

\(\nabla ^{2}\) :

Laplacian operator \((\rm{m}^{-2})\)

References

  1. Happel J (1958) Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles. AIChE J 4(2):197–201. https://doi.org/10.1002/aic.690040214

    Article  Google Scholar 

  2. Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J Phys Soc Japan 14(4):527–532. https://doi.org/10.1143/JPSJ.14.527

    Article  MathSciNet  Google Scholar 

  3. Kvashnin AG (1979) Cell model of suspension of spherical particles. Fluid Dyn 14(4):598–602. https://doi.org/10.1007/BF01051266

    Article  MATH  Google Scholar 

  4. Cunningham E (1910) On the velocity of steady fall of spherical particles through fluid medium. Proc Math Phys Eng Sci 83(563):357–365. https://doi.org/10.1098/rspa.1910.0024

    Article  MATH  Google Scholar 

  5. Vinogradova OI (1995) Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11(6):2213–2220. https://doi.org/10.1021/la00006a059

    Article  Google Scholar 

  6. Vinogradova OI (1999) Slippage of water over hydrophobic surfaces. Int J Miner Process 56(1):31–60. https://doi.org/10.1016/S0301-7516(98)00041-6

    Article  Google Scholar 

  7. Hocking LM (1973) The effect of slip on the motion of a sphere close to a wall and of two adjacent spheres. J Eng Math 7(3):207–221. https://doi.org/10.1007/BF01535282

    Article  MATH  Google Scholar 

  8. Lecoq N, Anthore R, Cichocki B, Szymczak P, Feuillebois F (2004) Drag force on a sphere moving towards a corrugated wall. J Fluid Mech 513:247–264. https://doi.org/10.1017/S0022112004009942

    Article  MATH  Google Scholar 

  9. Navier CLMH (1823) Mémoire sur les lois du mouvement des fluides. Mémoires de l’Académie Royale des Sciences de l’Institut de France 6:389–440

    Google Scholar 

  10. Davis AMJ, Kezirian MT, Brenner H (1992) On the motion through a viscous fluid of a spherical particle touching a plane wall: slip boundary conditions. NASA STI/Recon Technical Report N 94:12961

    Google Scholar 

  11. Zhao Y, Davis RH (2002) Interaction of two touching spheres in a viscous fluid. Chem Eng Sci 57(11):1997–2006. https://doi.org/10.1016/S0009-2509(02)00104-5

    Article  Google Scholar 

  12. Yang F (2009) Slip boundary condition for viscous flow over solid surfaces. Chem Eng Commun 197(4):544–550. https://doi.org/10.1080/00986440903245948

    Article  Google Scholar 

  13. Faltas MS, Saad EI (2005) Stokes flow with slip caused by the axisymmetric motion of a sphere bisected by a free surface bounding a semi-infinite micropolar fluid. Int J Eng Sci 43(11):953–976. https://doi.org/10.1016/j.ijengsci.2005.02.002

    Article  MathSciNet  MATH  Google Scholar 

  14. Sherief HH, Faltas MS, Saad EI (2008) Slip at the surface of a sphere translating perpendicular to a plane wall in micropolar fluid. Z fur Angew Math Phys 59(2):293–312. https://doi.org/10.1007/s00033-007-6078-y

    Article  MathSciNet  MATH  Google Scholar 

  15. Saad HS, Ashmawy EA (2016) Unsteady plane Couette flow of an incompressible couple stress fluid with slip boundary conditions. Int J Med Health Sci Res 3(7):85–92

    Google Scholar 

  16. Ashmawy EA (2016) Drag on a slip spherical particle moving in a couple stress fluid. Alex Eng J 55(2):1159–1164. https://doi.org/10.1016/j.aej.2016.03.032

    Article  Google Scholar 

  17. Krishna Prasad M, Priya S (2022) Couple stress fluid past a sphere embedded in a porous medium. Arch Mech Eng 69(1):5–19. https://doi.org/10.24425/ame.2021.139314

    Article  Google Scholar 

  18. Mehta GD, Morse TF (1975) Flow through charged membranes. J Chem Phys 63(5):1878–1889. https://doi.org/10.1063/1.431575

    Article  Google Scholar 

  19. Dassios G, Hadjinicolaou M, Coutelieris FA, Payatakes AC (1995) Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions. Int J Eng Sci 33(10):1465–1490. https://doi.org/10.1016/0020-7225(95)00010-U

    Article  MATH  Google Scholar 

  20. Datta S, Deo S (2002) Stokes flow with slip and Kuwabara boundary conditions. P indian as-math sci 112(3):463–475. https://doi.org/10.1007/BF02829798

    Article  MathSciNet  MATH  Google Scholar 

  21. Ramkissoon H, Rahaman K (2003) Wall effects on a spherical particle. Int J Eng Sci 41(3):283–290. https://doi.org/10.1016/S0020-7225(02)00209-4

    Article  MathSciNet  MATH  Google Scholar 

  22. Zholkovskiy EK, Shilov VN, Masliyah JH, Bondarenko MP (2007) Hydrodynamic cell model: general formulation and comparative analysis of different approaches. Can J Chem Eng 85(5):701–725. https://doi.org/10.1002/cjce.5450850517

    Article  Google Scholar 

  23. Faltas MS, Saad EI (2011) Stokes flow past an assemblage of slip eccentric spherical particle-in-cell models. Math Methods Appl Sci 34(13):1594–1605. https://doi.org/10.1002/mma.1465

    Article  MathSciNet  MATH  Google Scholar 

  24. Keh HJ, Lee TC (2010) Axisymmetric creeping motion of a slip spherical particle in a nonconcentric spherical cavity. Theor Comput Fluid Dyn 24(5):497–510. https://doi.org/10.1007/s00162-010-0181-y

    Article  MATH  Google Scholar 

  25. Lee TC, Keh HJ (2013) Slow motion of a spherical particle in a spherical cavity with slip surfaces. Int J Eng Sci 69:1–15. https://doi.org/10.1016/j.ijengsci.2013.03.010

    Article  MathSciNet  MATH  Google Scholar 

  26. Felderhof BU, Sellier A (2012) Mobility matrix of a spherical particle translating and rotating in a viscous fluid confined in a spherical cell, and the rate of escape from the cell. J Chem Phys 136(5):054703. https://doi.org/10.1063/1.3681368

    Article  Google Scholar 

  27. Krishna Prasad M (2020) Slip flow of a sphere in non-concentric spherical hypothetical cell. J Appl Math Comput Mech 19(3):59–70. https://doi.org/10.17512/jamcm.2020.3.05

    Article  MathSciNet  Google Scholar 

  28. Krishna Prasad M, Priya S (2022) Slow flow past a slip sphere in cell model: magnetic effect. Rec Trends Fluid Dyn Res. https://doi.org/10.1007/978-981-16-6928-6_3

    Article  Google Scholar 

  29. Eringen AC (1966) Theory of micropolar fluids. J Math Mech 16(1):1–18. https://doi.org/10.1512/iumj.1967.16.16001

    Article  MathSciNet  Google Scholar 

  30. Saad EI (2012) Cell models for micropolar flow past a viscous fluid sphere. Meccanica 47(8):2055–2068. https://doi.org/10.1007/s11012-012-9575-9

    Article  MathSciNet  MATH  Google Scholar 

  31. Saad EI (2014) Motion of a slip sphere in a nonconcentric fictitious spherical envelope of micropolar fluid. ANZIAM J 55(4):383–401. https://doi.org/10.1017/S1446181114000182

    Article  MathSciNet  MATH  Google Scholar 

  32. Sherief HH, Faltas MS, Ashmawy EA, Nashwan MG (2015) Stokes flow of a micropolar fluid past an assemblage of spheroidal particle-in-cell models with slip. Phys Scr 90(5):055203. https://doi.org/10.1088/0031-8949/90/5/055203

    Article  Google Scholar 

  33. Krishna Prasad M, Gurdatta MK (2017) Wall effects on viscous fluid spheroidal droplet in a micropolar fluid spheroidal cavity. Eur J Mech B/Fluids 65:312–325. https://doi.org/10.1016/j.euromechflu.2017.05.002

    Article  MathSciNet  MATH  Google Scholar 

  34. Krishna Prasad M, Gurdatta MK (2018) Cell models for viscous fluid past a micropolar fluid spheroidal droplet. J Braz Soc Mech Sci Eng 40(2):1–15. https://doi.org/10.1007/s40430-018-1034-7

    Article  Google Scholar 

  35. Sherief HH, Faltas MS, El-Sapa S (2019) Axisymmetric creeping motion caused by a spherical particle in a micropolar fluid within a nonconcentric spherical cavity. Eur J Mech B/Fluids 77:211–220. https://doi.org/10.1016/j.euromechflu.2019.05.006

    Article  MathSciNet  MATH  Google Scholar 

  36. Shukla R, Dhole SD, Chhabra RP, Eswaran V (2004) Convective heat transfer for power law fluids in packed and fluidised beds of spheres. Chem Eng Sci 59(3):645–659. https://doi.org/10.1016/j.ces.2003.11.014

    Article  Google Scholar 

  37. Hsu JP, Yeh SJ, Tseng S (2008) Drag on a sphere in a spherical dispersion containing Carreau fluid. Powder Technol 188(1):34–41. https://doi.org/10.1016/j.powtec.2008.03.014

    Article  Google Scholar 

  38. Escott LJ, Wilson HJ (2020) Investigation into the rheology of a solid sphere suspension in second-order fluid using a cell model. Phys Rev Fluids 5(8):083301. https://doi.org/10.1103/PhysRevFluids.5.083301

    Article  Google Scholar 

  39. Stokes VK (1984) Couple stresses in fluids. Theories Fluids Microstuct. 34–80

  40. Alsudais NS, El-Sapa S, Ashmawy EA (2022) Stokes flow of an incompressible couple stress fluid confined between two eccentric spheres. Eur J Mech B/Fluids 91(2):244–252. https://doi.org/10.1016/j.euromechflu.2021.10.011

    Article  MathSciNet  MATH  Google Scholar 

  41. Priya S, Krishna Prasad M (2023) Parallel and perpendicular flows of a couple stress fluid past a solid cylinder in cell model: slip condition. Phys Fluids 35(3):033101. https://doi.org/10.1063/5.0135866

    Article  Google Scholar 

  42. Hadjesfandiari AR, Dargush GF (2010) Polar continuum mechanics. arXiv preprint arXiv:1009.3252

  43. Hadjesfandiari AR, Dargush GF (2011) Couple stress theory for solids. Int J Solids Struct 48(18):2496–2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002

    Article  Google Scholar 

  44. Hadjesfandiari AR, Dargush GF, Hajesfandiari A (2013) Consistent skew-symmetric couple stress theory for size-dependent creeping flow. J Non-Newton Fluid Mech 196:83–94. https://doi.org/10.1016/j.jnnfm.2012.12.012

    Article  Google Scholar 

  45. Hadjesfandiari AR, Hajesfandiari A, Dargush GF (2015) Skew-symmetric couple-stress fluid mechanics. Acta Mech 226(3):871–895. https://doi.org/10.1007/s00707-014-1223-0

    Article  MathSciNet  MATH  Google Scholar 

  46. Stokes VK (2012) Theories of fluids with microstructure: An introduction. Springer, Berlin. https://doi.org/10.1007/978-3-642-82351-0

    Book  Google Scholar 

  47. Happel J, Brenner H (1965) Low Reynolds number hydrodynamics: with special applications to particulate media. Prentice-Hall, Englewood Cliffs NJ

    MATH  Google Scholar 

  48. Stokes VK (1971) Effects of couple stresses in fluids on the creeping flow past a sphere. Phys Fluids 14(7):1580–1582. https://doi.org/10.1063/1.1693645

    Article  MATH  Google Scholar 

  49. Basset AB (1961) A Treatise on Hydrodynamics, vol 2. Dover, New York

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the reviewers for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Prasad Madasu.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Technical Editor: Daniel Onofre de Almeida Cruz

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

The system of linear equations for the steady flow of an incompressible couple stress fluid past a slip sphere of radius \(r=a\) in a concentric spherical cavity of radius \(r=b\) are given as

The boundary conditions are:

  • on the surface of inner sphere \((r = a)\) The velocity component vanishes

    $$\begin{aligned} A a^{2} +\frac{B}{a} + C a^{4} + D a+ E\sqrt{a}K_{3 / 2}(\lambda a)\nonumber \\ + F\sqrt{a}I_{3 / 2}(\lambda a) = 0, \end{aligned}$$
    (8.1)

    The slip boundary condition

    $$\begin{aligned} Aa \beta _{1} - B\left( \frac{\beta _{1}}{2a^{2}} +\frac{3}{a^{3}}\right) + C \left( 2\beta _{1}a^{3} - 3 a^{2}\right) + D\frac{\beta _{1}}{2} \nonumber \\ - E a^{-\frac{1}{2}}\left( \left( \frac{\beta _{1}}{2} +\frac{3}{a}\right) K_{3 / 2}(\lambda a) +\left( \frac{a\beta _{1}}{2}+1\right) \lambda \right. \nonumber \\ \left. K_{1 / 2}(\lambda a) \right) - F a^{-\frac{1}{2}}\left( \left( \frac{\beta _{1}}{2} +\frac{3}{a}\right) I_{3 / 2}(\lambda a) \right. \nonumber \\ \left. -\left( \frac{a\beta _{1}}{2}+1\right) \lambda I_{1 / 2}(\lambda a) \right) = 0, \end{aligned}$$
    (8.2)

    The couple stress component vanishes

    $$\begin{aligned}{} & {} 10C(1-\tau ) + D(2+\tau ) \frac{2}{a^{3}} \nonumber \\{} & {} - E \lambda ^{2}a^{-\frac{3}{2}}\left( (2+\tau ) K_{3 / 2}(\lambda a) + \lambda a K_{1 / 2}(\lambda a)\right) \nonumber \\{} & {} - F\lambda ^{2}a^{-\frac{3}{2}} \left( (2+\tau ) I_{3 / 2}(\lambda a)-\lambda a I_{1 / 2}(\lambda a)\right) = 0, \end{aligned}$$
    (8.3)
  • On the surface of the cell model \((r = b)\) Radial velocity is continuous

    $$\begin{aligned}{} & {} A b^{2} +\frac{B}{b} + C b^{4} + D b+ E\sqrt{b}K_{3 / 2}(\lambda b) \nonumber \\{} & {} + F\sqrt{b}I_{3 / 2}(\lambda b) = b^{2}, \end{aligned}$$
    (8.4)

    The couple stress component vanishes on the cell surface

    $$\begin{aligned}{} & {} 10C(1-\tau ) + D(2+\tau ) \frac{2}{b^{3}}\nonumber \\{} & {} -E \lambda ^{2}b^{-\frac{3}{2}}\left( (2+\tau ) K_{3 / 2}(\lambda b)+ \lambda b K_{1 / 2}(\lambda b)\right) \nonumber \\{} & {} -F\lambda ^{2} b^{-\frac{3}{2}}\left( (2+\tau ) I_{3 / 2}(\lambda b) -\lambda b I_{1 / 2}(\lambda b)\right) = 0, \end{aligned}$$
    (8.5)
    • Happel’s model:

      $$\begin{aligned}{} & {} B\frac{3}{b^{4}}+3bC +Eb^{-\frac{5}{2}}\left( 3K_{3 / 2}(\lambda b)+\lambda b K_{1 / 2}(\lambda b)\right) \nonumber \\{} & {} + Fb^{-\frac{5}{2}} \left( 3I_{3 / 2}(\lambda b)-\lambda bI_{1 / 2}(\lambda b)\right) = 0, \end{aligned}$$
      (8.6)
    • Kuwabara’s model:

      $$\begin{aligned}{} & {} 10Cb^{2}-\frac{2}{b}D+ E\lambda ^{2}b^{\frac{1}{2}}K_{3 / 2}(\lambda b)\nonumber \\{} & {} +F\lambda ^{2}b^{\frac{1}{2}} I_{3 / 2}(\lambda b) = 0, \end{aligned}$$
      (8.7)
    • Kvashmin’s model:

      $$\begin{aligned}{} & {} \frac{3}{b^{4}}B+8b C-\frac{1}{b^{2}}D\nonumber \\{} & {} +Eb^{-\frac{5}{2}}\left( (3+\lambda ^{2}b^{2})K_{3 / 2}(\lambda b) +\lambda bK_{1 / 2}(\lambda b)\right) \nonumber \\{} & {} + Fb^{-\frac{5}{2}} \left( (3+\lambda ^{2}b^{2})I_{3 / 2}(\lambda b)-\lambda bI_{1 / 2}(\lambda b)\right) = 0, \end{aligned}$$
      (8.8)
    • Cunningham’s model:

      $$\begin{aligned}{} & {} A-\frac{1}{2b^{3}}B+ 2b^{2} C + \frac{1}{2b}D\nonumber \\{} & {} -E\frac{1}{2}b^{-\frac{3}{2}}\left( K_{3 / 2}(\lambda b)+ \lambda b K_{1 / 2}(\lambda b)\right) \nonumber \\{} & {} -F\frac{1}{2}b^{-\frac{3}{2}} \left( I_{3 / 2}(\lambda b)-\lambda b I_{1 / 2}(\lambda b)\right) = 1. \end{aligned}$$
      (8.9)

The above equations represent the four systems of algebraic equations (Happel’s model: Eq.(8.1)-Eq.(8.6), Kuwabara’s model: Eq.(8.1)-Eq.(8.5) and Eq.(8.7) Kvashnin’s model: Eq.(8.1)-Eq.(8.5) and Eq.(8.8), Cunningham’s model: Eq.(8.1)-Eq.(8.5) and Eq.(8.9)) for the determining the unknown constants A, B, C, D, E and F. The solutions in each case are cumbersome and lengthy, so they are not presented here.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madasu, K.P., Sarkar, P. Slow motion of couple stress fluid past a solid sphere in a virtual cell: slip effect. J Braz. Soc. Mech. Sci. Eng. 45, 480 (2023). https://doi.org/10.1007/s40430-023-04363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04363-y

Keywords

Navigation