Skip to main content

Advertisement

Log in

Development of sustainable foamed alkali-activated materials for modular construction

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The production of non-structural parts for modular construction demands a material which combines low density and suitable mechanical strength—foam products are a feasible option. Alkali-activated materials (AAM) have been highly studied in the past decades as potential sustainable binders. Steel slag (SS) has little commercial application and could be applied as possible sustainable binder alternative to ground granulated blast furnace slag (GGBFS) in AAM. This paper studied GGBFS/SS-based foamed AAM (FAAM) applying a mechanical foaming method and analyzed the effect of different quantities of the surfactant (0, 0.25, 0.5, 0.75, 1 and 2%) in the density, compressive strength, porosity and in the porous microstructure. The results have shown that the replacement of 35% GGBFS with SS reduced the compressive strength in 38.1% at 28 days, due to the lower reactivity of SS compared to GGBFS. When the surfactant is added at 2%, the statistical analysis confirmed that the use of SS does not affect porosity. The density reduced equally for GGBFS and GGBFS/SS FAAM (from 1.80 to 1.44 g/cm3 and from 1.82 to 1.42 g/cm3, respectively). The reduction in compressive strength of the different matrices is, however, significantly different: from 46.89 to 22.55 MPa for GGBFS FAAM and from 29.02 to 13.78 MPa for GGBFS/SS FAAM at 28 days. Nevertheless, SS may be potential sustainable candidate as partial replacement to GGBFS in the development of sustainable FAAM, as the lowest strength of GGBFS/SS (13.78 MPa) is still acceptable when higher surfactant content is employed (2%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tumminia G, Guarino F, Longo S et al (2018) Life cycle energy performances and environmental impacts of a prefabricated building module. Renew Sustain Energy Rev 92:272–283. https://doi.org/10.1016/j.rser.2018.04.059

    Article  Google Scholar 

  2. Raj A, Sathyan D, Mini KM (2019) Physical and functional characteristics of foam concrete: a review. Constr Build Mater 221:787–799. https://doi.org/10.1016/j.conbuildmat.2019.06.052

    Article  Google Scholar 

  3. Amran YHM, Farzadnia N, Ali AAA (2015) Properties and applications of foamed concrete; a review. Constr Build Mater 101:990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112

    Article  Google Scholar 

  4. Scrivener KL, John VM, Gartner EM (2018) Eco-efficient cements: potential economically viable solutions for a low-CO2 cement-based materials industry. Cem Concr Res 114:2–26. https://doi.org/10.1016/j.cemconres.2018.03.015

    Article  Google Scholar 

  5. Moumin G, Ryssel M, Zhao L et al (2020) CO2 emission reduction in the cement industry by using a solar calciner. Renew Energy 145:1578–1596. https://doi.org/10.1016/j.renene.2019.07.045

    Article  Google Scholar 

  6. Jaya NA, Yun-Ming L, Cheng-Yong H et al (2020) Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer. Constr Build Mater 247:118641. https://doi.org/10.1016/j.conbuildmat.2020.118641

  7. Aliques-Granero J, Tognonvi MT, Tagnit-Hamou A (2019) Durability study of AAMs: sulfate attack resistance. Constr Build Mater 229:117100. https://doi.org/10.1016/j.conbuildmat.2019.117100

  8. Bernal SA, Provis JL (2014) Durability of alkali-activated materials: progress and perspectives. J Am Ceram Soc 97:997–1008. https://doi.org/10.1111/jace.12831

    Article  Google Scholar 

  9. Adesanya E, Ohenoja K, Kinnunen P, Illikainen M (2017) Properties and durability of alkali-activated ladle slag. Mater Struct 50:255. https://doi.org/10.1617/s11527-017-1125-4

    Article  Google Scholar 

  10. Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials. Annu Rev Mater Res 44:299–327. https://doi.org/10.1146/annurev-matsci-070813-113515

    Article  Google Scholar 

  11. Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Alkali-activated binders: a review. Constr Build Mater 22:1305–1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015

    Article  Google Scholar 

  12. Pacheco-Torgal F (2015) Introduction to handbook of alkali-activated cements, mortars and concretes. In: Handbook of alkali-activated cements, mortars and concretes. Elsevier, Amsterdam, pp 1–16

  13. Nodehi M, Taghvaee VM (2022) Alkali-activated materials and geopolymer: a review of common precursors and activators addressing circular economy. Circ Econ Sustain 2:165–196. https://doi.org/10.1007/s43615-021-00029-w

    Article  Google Scholar 

  14. Amran YHM, Alyousef R, Alabduljabbar H, El-Zeadani M (2020) Clean production and properties of geopolymer concrete; a review. J Clean Prod 251:119679. https://doi.org/10.1016/j.jclepro.2019.119679

  15. Adesanya E, Perumal P, Luukkonen T, et al (2021) Opportunities to improve sustainability of alkali-activated materials: a review of side-stream based activators. J Clean Prod 286:125558. https://doi.org/10.1016/j.jclepro.2020.125558

  16. Tang Z, Li W, Hu Y et al (2019) Review on designs and properties of multifunctional alkali-activated materials (AAMs). Constr Build Mater 200:474–489. https://doi.org/10.1016/j.conbuildmat.2018.12.157

    Article  Google Scholar 

  17. Elahi MMA, Hossain MM, Karim MR et al (2020) A review on alkali-activated binders: Materials composition and fresh properties of concrete. Constr Build Mater 260:119788. https://doi.org/10.1016/j.conbuildmat.2020.119788

  18. Saeed A, Najm HM, Hassan A et al (2022) Properties and applications of geopolymer composites: a review study of mechanical and microstructural properties. Materials (Basel) 15:8250. https://doi.org/10.3390/ma15228250

    Article  Google Scholar 

  19. Sun B, Ye G, de Schutter G (2022) A review: reaction mechanism and strength of slag and fly ash-based alkali-activated materials. Constr Build Mater 326:126843. https://doi.org/10.1016/j.conbuildmat.2022.126843

  20. Kočí V, Černý R (2022) Directly foamed geopolymers: a review of recent studies. Cem Concr Compos 130:104530. https://doi.org/10.1016/j.cemconcomp.2022.104530

  21. Klima KM, Schollbach K, Brouwers HJH, Yu Q (2022) Thermal and fire resistance of Class F fly ash based geopolymers - a review. Constr Build Mater 323:126529. https://doi.org/10.1016/j.conbuildmat.2022.126529

  22. Gupta P, Nagpal G, Gupta N (2021) Fly ash-based geopolymers: an emerging sustainable solution for heavy metal remediation from aqueous medium. Beni-Suef Univ J Basic Appl Sci 10:89. https://doi.org/10.1186/s43088-021-00179-8

    Article  Google Scholar 

  23. Singh NB, Kumar M, Rai S (2020) Geopolymer cement and concrete: properties. Mater Today Proc 29:743–748. https://doi.org/10.1016/j.matpr.2020.04.513

    Article  Google Scholar 

  24. Unis Ahmed H, Mahmood LJ, Muhammad MA et al (2022) Geopolymer concrete as a cleaner construction material: an overview on materials and structural performances. Clean Mater 5:100111. https://doi.org/10.1016/j.clema.2022.100111

  25. Traven K, Češnovar M, Škapin SD, Ducman V (2021) High temperature resistant fly-ash and metakaolin-based alkali-activated foams. Ceram Int 47:25105–25120. https://doi.org/10.1016/j.ceramint.2021.05.241

    Article  Google Scholar 

  26. Ramos FJHTV, Vieira Marques de MF, de Oliveira Aguiar V, Jorge FE (2022) Performance of geopolymer foams of blast furnace slag covered with poly(lactic acid) for wastewater treatment. Ceram Int 48:732–743. https://doi.org/10.1016/j.ceramint.2021.09.153

    Article  Google Scholar 

  27. Wattanasiriwech D, Yomthong K, Wattanasiriwech S (2021) Adsorption efficiency and photocatalytic activity of fly ash-based geopolymer foam mortar. Ceram Int 47:27361–27371. https://doi.org/10.1016/j.ceramint.2021.06.158

    Article  Google Scholar 

  28. Zhang J, Zhang X, Liu B et al (2022) Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge. Int J Miner Metall Mater 29:563–573. https://doi.org/10.1007/s12613-020-2219-5

    Article  Google Scholar 

  29. Hajimohammadi A, Ngo T, Mendis P (2018) Enhancing the strength of pre-made foams for foam concrete applications. Cem Concr Compos 87:164–171. https://doi.org/10.1016/j.cemconcomp.2017.12.014

    Article  Google Scholar 

  30. Bai C, Colombo P (2018) Processing, properties and applications of highly porous geopolymers: a review. Ceram Int 44:16103–16118. https://doi.org/10.1016/j.ceramint.2018.05.219

    Article  Google Scholar 

  31. Liang G, Liu T, Li H, et al.(2022) A novel synthesis of lightweight and high-strength green geopolymer foamed material by rice husk ash and ground-granulated blast-furnace slag. Resour Conserv Recycl 176:105922. https://doi.org/10.1016/j.resconrec.2021.105922

  32. Zawrah MF, Badr HA, Khattab RM et al (2021) Fabrication and characterization of non-foamed and foamed geopolymers from industrial waste clays. Ceram Int 47:29320–29327. https://doi.org/10.1016/j.ceramint.2021.07.097

    Article  Google Scholar 

  33. Carabba L, Moricone R, Scarponi GE et al (2019) Alkali activated lightweight mortars for passive fire protection: a preliminary study. Constr Build Mater 195:75–84. https://doi.org/10.1016/j.conbuildmat.2018.11.005

    Article  Google Scholar 

  34. Hajimohammadi A, Ngo T, Mendis P (2017) How does aluminium foaming agent impact the geopolymer formation mechanism? Cem Concr Compos 80:277–286. https://doi.org/10.1016/j.cemconcomp.2017.03.022

    Article  Google Scholar 

  35. Ducman V, Korat L (2016) Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mater Charact 113:207–213. https://doi.org/10.1016/j.matchar.2016.01.019

    Article  Google Scholar 

  36. Yatsenko EA, Goltsman BM, Trofimov SV et al (2022) Improving the properties of porous geopolymers based on TPP ash and slag waste by adjusting their chemical composition. Materials (Basel) 15:2587. https://doi.org/10.3390/ma15072587

    Article  Google Scholar 

  37. Pasupathy K, Ramakrishnan S, Sanjayan J (2021) Formulating eco-friendly geopolymer foam concrete by alkali-activation of ground brick waste. J Clean Prod 325:129180. https://doi.org/10.1016/j.jclepro.2021.129180

  38. Kovářík T, Hájek J, Hervert T, et al (2021) Silica-based geopolymer spherical beads: Influence of viscosity on porosity architecture. Cem Concr Compos 124:104261. https://doi.org/10.1016/j.cemconcomp.2021.104261

  39. Shakouri S, Bayer Ö, Erdoğan ST (2020) Development of silica fume-based geopolymer foams. Constr Build Mater 260:120442. https://doi.org/10.1016/j.conbuildmat.2020.120442

  40. Zhao Y, Shi T, Cao L, et al (2021) Influence of steel slag on the properties of alkali-activated fly ash and blast-furnace slag based fiber reinforced composites. Cem Concr Compos 116:103875. https://doi.org/10.1016/j.cemconcomp.2020.103875

  41. Hao Y, Yang G, Liang K (2022) Development of fly ash and slag based high-strength alkali-activated foam concrete. Cem Concr Compos 128:104447. https://doi.org/10.1016/j.cemconcomp.2022.104447

  42. Sornlar W, Wannagon A, Supothina S (2021) Stabilized homogeneous porous structure and pore type effects on the properties of lightweight kaolinite-based geopolymers. J Build Eng 44:103273. https://doi.org/10.1016/j.jobe.2021.103273

  43. Pavlin M, Horvat B, Češnovar M, Ducman V (2022) The preparation and characterization of low-temperature foams based on the alkali activation of waste stone wool. Ceram Int 48:17668–17681. https://doi.org/10.1016/j.ceramint.2022.03.037

    Article  Google Scholar 

  44. Bai C, Li H, Bernardo E, Colombo P (2019) Waste-to-resource preparation of glass-containing foams from geopolymers. Ceram Int 45:7196–7202. https://doi.org/10.1016/j.ceramint.2018.12.227

    Article  Google Scholar 

  45. Jaya NA, Yun-Ming L, Cheng-Yong H et al (2021) Effect of anisotropic pores on the material properties of metakaolin geopolymer composites incorporated with corrugated fiberboard and rubber. J Mater Res Technol 14:822–834. https://doi.org/10.1016/j.jmrt.2021.06.098

    Article  Google Scholar 

  46. Petlitckaia S, Poulesquen A (2019) Design of lightweight metakaolin based geopolymer foamed with hydrogen peroxide. Ceram Int 45:1322–1330. https://doi.org/10.1016/j.ceramint.2018.10.021

    Article  Google Scholar 

  47. Alnahhal AM, Alengaram UJ, Yusoff S et al (2022) Engineering performance of sustainable geopolymer foamed and non-foamed concretes. Constr Build Mater 316:125601. https://doi.org/10.1016/j.conbuildmat.2021.125601

  48. Masi G, Rickard WDA, Vickers L et al (2014) A comparison between different foaming methods for the synthesis of light weight geopolymers. Ceram Int 40:13891–13902. https://doi.org/10.1016/j.ceramint.2014.05.108

    Article  Google Scholar 

  49. Sanguanpak S, Wannagon A, Saengam C, et al.(2021) Porous metakaolin-based geopolymer granules for removal of ammonium in aqueous solution and anaerobically pretreated piggery wastewater. J Clean Prod 297:126643. https://doi.org/10.1016/j.jclepro.2021.126643

  50. Ramakrishnan S, Pasupathy K, Sanjayan J (2021) Synthesis and properties of thermally enhanced aerated geopolymer concrete using form-stable phase change composite. J Build Eng 40:102756. https://doi.org/10.1016/j.jobe.2021.102756

  51. Hajimohammadi A, Ngo T, Mendis P et al (2017) Alkali activated slag foams: the effect of the alkali reaction on foam characteristics. J Clean Prod 147:330–339. https://doi.org/10.1016/j.jclepro.2017.01.134

    Article  Google Scholar 

  52. Aziz IH, Abdullah MMAB, Salleh MAAM et al (2022) Recent Developments in steelmaking industry and potential alkali activated based steel waste: a comprehensive review. Materials (Basel) 15:1948. https://doi.org/10.3390/ma15051948

    Article  Google Scholar 

  53. Yildirim IZ, Prezzi M (2011) Chemical, mineralogical, and morphological properties of steel slag. Adv Civ Eng 2011:1–13. https://doi.org/10.1155/2011/463638

    Article  Google Scholar 

  54. Li L, Ling T-C, Pan S-Y (2022) Environmental benefit assessment of steel slag utilization and carbonation: a systematic review. Sci Total Environ 806:150280. https://doi.org/10.1016/j.scitotenv.2021.150280

  55. Rashad AM (2022) Behavior of steel slag aggregate in mortar and concrete—a comprehensive overview. J Build Eng 53:104536. https://doi.org/10.1016/j.jobe.2022.104536

  56. Liu Y, Su Y, Xu G et al (2022) Research progress on controlled low-strength materials: metallurgical waste slag as cementitious materials. Materials (Basel) 15:727. https://doi.org/10.3390/ma15030727

    Article  Google Scholar 

  57. Jiang Y, Ling TC, Shi C, Pan SY (2018) Characteristics of steel slags and their use in cement and concrete—a review. Resour Conserv Recycl 136:187–197

    Article  Google Scholar 

  58. Ozturk M, Bankir MB, Bolukbasi OS, Sevim UK (2019) Alkali activation of electric arc furnace slag: mechanical properties and micro analyzes. J Build Eng 21:97–105. https://doi.org/10.1016/j.jobe.2018.10.005

    Article  Google Scholar 

  59. Sun J, Zhang Z, Zhuang S, He W (2020) Hydration properties and microstructure characteristics of alkali–activated steel slag. Constr Build Mater 241:118141. https://doi.org/10.1016/j.conbuildmat.2020.118141

  60. Sun J, Chen Z (2019) Effect of silicate modulus of water glass on the hydration of alkali-activated converter steel slag. J Therm Anal Calorim 138:47–56. https://doi.org/10.1007/s10973-019-08146-3

    Article  Google Scholar 

  61. Morone M, Cizer Ö, Costa G, Baciocchi R (2020) Effects of alkali activation and CO2 curing on the hydraulic reactivity and carbon storage capacity of BOF slag in view of its use in concrete. Waste Biomass Valorization 11:3007–3020. https://doi.org/10.1007/s12649-019-00579-z

    Article  Google Scholar 

  62. Liu Z, Zhang D, Li L et al (2019) Microstructure and phase evolution of alkali-activated steel slag during early age. Constr Build Mater 204:158–165. https://doi.org/10.1016/j.conbuildmat.2019.01.213

    Article  Google Scholar 

  63. Češnovar T, Horvat D (2019) The potential of ladle slag and electric arc furnace slag use in synthesizing alkali activated materials; the influence of curing on mechanical properties. Materials (Basel) 12:1173. https://doi.org/10.3390/ma12071173

    Article  Google Scholar 

  64. Lancellotti I, Piccolo F, Traven K et al (2021) Alkali activation of metallurgical slags: reactivity, chemical behavior, and environmental assessment. Materials (Basel) 14:1–19. https://doi.org/10.3390/ma14030639

    Article  Google Scholar 

  65. Nunes VA, Suraneni P, Bezerra ACS et al (2022) Influence of activation parameters on the mechanical and microstructure properties of an alkali-activated BOF steel slag. Appl Sci 12:12437. https://doi.org/10.3390/app122312437

    Article  Google Scholar 

  66. Song W, Zhu Z, Peng Y, et al (2019) Effect of steel slag on fresh, hardened and microstructural properties of high-calcium fly ash based geopolymers at standard curing condition. Constr Build Mater 229:116933. https://doi.org/10.1016/j.conbuildmat.2019.116933

  67. Chen Y, Zhou X, Wan S et al (2019) Synthesis and characterization of geopolymer composites based on gasification coal fly ash and steel slag. Constr Build Mater 211:646–658. https://doi.org/10.1016/j.conbuildmat.2019.03.292

    Article  Google Scholar 

  68. Guo X, Yang J (2020) Intrinsic properties and micro-crack characteristics of ultra-high toughness fly ash/steel slag based geopolymer. Constr Build Mater 230:116965. https://doi.org/10.1016/j.conbuildmat.2019.116965

  69. Furlani E, Maschio S, Magnan M et al (2018) Synthesis and characterization of geopolymers containing blends of unprocessed steel slag and metakaolin: the role of slag particle size. Ceram Int 44:5226–5232. https://doi.org/10.1016/j.ceramint.2017.12.131

    Article  Google Scholar 

  70. Bai T, Song Z-G, Wu Y-G et al (2018) Influence of steel slag on the mechanical properties and curing time of metakaolin geopolymer. Ceram Int 44:15706–15713. https://doi.org/10.1016/j.ceramint.2018.05.243

    Article  Google Scholar 

  71. Song W, Zhu Z, Pu S et al (2020) Efficient use of steel slag in alkali-activated fly ash-steel slag-ground granulated blast furnace slag ternary blends. Constr Build Mater 259:119814. https://doi.org/10.1016/j.conbuildmat.2020.119814

  72. Liu J, Yi C, Zhu H, Ma H (2019) Property comparison of alkali-activated carbon steel slag (CSS) and stainless steel slag (SSS) and role of blast furnace slag (BFS) chemical composition. Materials (Basel) 12:3307. https://doi.org/10.3390/ma12203307

    Article  Google Scholar 

  73. Zhou Y, Sun J, Liao Y (2022) Influence of ground granulated blast furnace slag on the early hydration and microstructure of alkali-activated converter steel slag binder. J Therm Anal Calorim 147:243–252. https://doi.org/10.1007/s10973-020-10220-0

    Article  Google Scholar 

  74. Wang M, Qian B, Jiang J et al (2020) The reaction between Ca2+ from steel slag and granulated blast-furnace slag system: a unique perspective. Chem Pap 74:4401–4410. https://doi.org/10.1007/s11696-020-01248-5

    Article  Google Scholar 

  75. You N, Li B, Cao R, et al (2019) The influence of steel slag and ferronickel slag on the properties of alkali-activated slag mortar. Constr Build Mater 227:116614. https://doi.org/10.1016/j.conbuildmat.2019.07.340

  76. Kabay N, Miyan N, Özkan H (2021) Basic oxygen furnace and ground granulated blast furnace slag based alkali-activated pastes: characterization and optimization. J Clean Prod 327:129483. https://doi.org/10.1016/j.jclepro.2021.129483

  77. Nunes VA, Borges PHR (2021) Recent advances in the reuse of steel slags and future perspectives as binder and aggregate for alkali-activated materials. Constr Build Mater 281:122605. https://doi.org/10.1016/j.conbuildmat.2021.122605

  78. Bai C, Conte A, Colombo P (2017) Open-cell phosphate-based geopolymer foams by frothing. Mater Lett 188:379–382. https://doi.org/10.1016/j.matlet.2016.11.103

    Article  Google Scholar 

  79. ASTM International (2021) ASTM C39/C39M-21. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens

  80. ASTM International (2021) ASTM C642–21. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete

  81. ASTM International (2016) ASTM C457/C457M-16. Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete 1

  82. Sisol M, Kudelas D, Marcin M et al (2019) Statistical evaluation of mechanical properties of slag based alkali-activated material. Sustainability 11:5935. https://doi.org/10.3390/su11215935

    Article  Google Scholar 

  83. Ahmad S, Bahraq AA, Shaqraa AA et al (2022) Effects of key factors on the compressive strength of metakaolin and limestone powder-based alkali-activated concrete mixtures: An experimental and statistical study. Case Stud Constr Mater 16:e00915. https://doi.org/10.1016/j.cscm.2022.e00915

  84. Zhang P, Kang L, Zheng Y et al (2022) Influence of SiO2 /Na2O molar ratio on mechanical properties and durability of metakaolin-fly ash blend alkali-activated sustainable mortar incorporating manufactured sand. J Mater Res Technol 18:3553–3563. https://doi.org/10.1016/j.jmrt.2022.04.041

    Article  Google Scholar 

  85. Ojo EB, Bello KO, Mustapha K et al (2019) Effects of fibre reinforcements on properties of extruded alkali activated earthen building materials. Constr Build Mater 227:116778. https://doi.org/10.1016/j.conbuildmat.2019.116778

  86. Ameri F, Shoaei P, Zareei SA, Behforouz B (2019) Geopolymers vs. alkali-activated materials (AAMs): a comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars. Constr Build Mater 222:49–63. https://doi.org/10.1016/j.conbuildmat.2019.06.079

    Article  Google Scholar 

  87. Yaragal SC, Chethan Kumar B, Jitin C (2020) Durability studies on ferrochrome slag as coarse aggregate in sustainable alkali activated slag/fly ash based concretes. Sustain Mater Technol 23:e00137. https://doi.org/10.1016/j.susmat.2019.e00137

  88. Korat L, Ducman V (2017) The influence of the stabilizing agent SDS on porosity development in alkali-activated fly-ash based foams. Cem Concr Compos 80:168–174. https://doi.org/10.1016/j.cemconcomp.2017.03.010

    Article  Google Scholar 

  89. Çolak A (2000) Density and strength characteristics of foamed gypsum. Cem Concr Compos 22:193–200. https://doi.org/10.1016/S0958-9465(00)00008-1

    Article  Google Scholar 

  90. Raja MA, Judes Sujatha S, Yadav A, Sophia M (2022) Design of an eco-friendly composite gypsum binder using different mineral admixtures. Mater Today Proc 62:5519–5525. https://doi.org/10.1016/j.matpr.2022.04.329

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CAPES, FAPEMIG (Grant PPM 00709-18), CNPq (Grant 316882/2021-6) and CEFET-MG for funding this research.

Author information

Authors and Affiliations

Authors

Contributions

Authors 1–2 contributed to conceptualization; methodology; data curation; formal analysis and writing—original draft. Author 3 helped in methodology. Authors 4–5 contributed to conceptualization, formal analysis, supervision and writing—review.

Corresponding author

Correspondence to Juliana Sofia Fonseca Camargos.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargos, J.S.F., Dias, E.A.P., da Silva, G.M. et al. Development of sustainable foamed alkali-activated materials for modular construction. J Braz. Soc. Mech. Sci. Eng. 45, 436 (2023). https://doi.org/10.1007/s40430-023-04346-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04346-z

Keywords

Navigation