Skip to main content

Advertisement

Log in

Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Municipal solid waste incineration products of bottom ash (BA), fly ash (FA), and pickling sludge (PS), causing severe environmental pollution, were transformed into glass ceramic foams with the aid of CaCO3 as a pore-foaming agent during sintering. The effect of the BA/FA mass ratio on the phase composition, pore morphology, pore size distribution, physical properties, and glass structure was investigated, with results showing that with the increase in the BA/FA ratio, the content of the glass phase, Si-O-Si, and Q3Si units decrease gradually. The glass transmission temperature of the mixture was also reduced. When combined, the glass viscosity decreases, causing bubble coalescence and uneven pore distribution. Glass ceramic foams with uniform spherical pores are fabricated. When the content of BA, FA, and PS are 35wt%, 45wt%, and 20wt%, respectively, contributing to high performance glass ceramic foams with a bulk density of 1.76 g/cm3, porosity of 56.01%, and compressive strength exceeding 16.23 MPa. This versatile and low-cost approach provides new insight into synergistically recycling solid wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Wang, Z.W. Chen, R. Ji, L.L. Liu, and X.D. Wang, Integrated utilization of high alumina fly ash for synthesis of foam glass ceramic, Ceram. Int., 44(2018), No. 12, p. 13681.

    Article  CAS  Google Scholar 

  2. S. Das, S.H. Lee, P. Kumar, K.H. Kim, S.S. Lee, and S.S. Bhattacharya, Solid waste management: Scope and the challenge of sustainability, J. Clean. Prod., 228(2019), p. 658.

    Article  Google Scholar 

  3. C. Mugoni, M. Montorsi, C. Siligardi, F. Andreola, I. Lancellotti, E. Bernardo, and L. Barbieri, Design of glass foams with low environmental impact, Ceram. Int., 41(2015), No. 3, p. 3400.

    Article  CAS  Google Scholar 

  4. M.G. Zhu, R. Ji, Z.M. Li, H. Wang, L.L. Liu, and Z.T. Zhang, Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass, Constr. Build. Mater., 112(2016), p. 398.

    Article  CAS  Google Scholar 

  5. R. Ji, Z.T. Zhang, Y. He, L.L. Liu, and X.D. Wang, Synthesis, characterization and modeling of new building insulation material using ceramic polishing waste residue, Constr. Build. Mater., 85(2015), p. 119.

    Article  Google Scholar 

  6. E. Bernardo, R. Cedro, M. Florean, and S. Hreglich, Reutilization and stabilization of wastes by the production of glass foams, Ceram. Int., 33(2007), No. 6, p. 963.

    Article  CAS  Google Scholar 

  7. M.T. Souza, B.G.O. Maia, L.B. Teixeira, K.G. de Oliveira, A.H.B. Teixeira, and A.P. Novaes de Oliveira, Glass foams produced from glass bottles and eggshell wastes, Process. Saf. Environ. Prot., 111(2017), p. 60.

    Article  CAS  Google Scholar 

  8. E. Sharifikolouei, F. Baino, C. Galletti, D. Fino, and M. Ferraris, Adsorption of Pb and Cd in rice husk and their immobilization in porous glass-ceramic structures, Int. J. Appl. Ceram. Technol., 17(2020), No. 1, p. 105.

    Article  CAS  Google Scholar 

  9. C.P. Xi, F. Zheng, J.H. Xu, W.G. Yang, Y.Q. Peng, Y. Li, P. Li, Q. Zhen, S. Bashir, and J.L. Liu, Preparation of glass-ceramic foams using extracted titanium tailing and glass waste as raw materials, Constr. Build. Mater., 190(2018), p. 896.

    Article  CAS  Google Scholar 

  10. T.Y. Liu, C.W. Lin, J.L. Liu, L. Han, H. Gui, C. Li, X. Zhou, H. Tang, Q.F. Yang, and A.X. Lu, Phase evolution, pore morphology and microstructure of glass ceramic foams derived from tailings wastes, Ceram. Int., 44(2018), No. 12, p. 14393.

    Article  Google Scholar 

  11. F. Baino and M. Ferraris, Production and characterization of ceramic foams derived from vitrified bottom ashes, Mater. Lett., 236(2019), p. 281.

    Article  CAS  Google Scholar 

  12. P. Stabile, M. Bello, M. Petrelli, E. Paris, and M.R. Carroll, Vitrification treatment of municipal solid waste bottom ash, Waste Manage., 95(2019), p. 250.

    Article  CAS  Google Scholar 

  13. A. Vaitkus, J. Gražulytė, O. Šernas, V. Vorobjovas, and R. Kleizienė, An algorithm for the use of MSWI bottom ash as a building material in road pavement structural layers, Constr. Build. Mater., 212(2019), p. 456.

    Article  Google Scholar 

  14. G. Flesoura, B. Garcia-Banos, J.M. Catala-Civera, J. Vleugels, and Y. Pontikes, In-situ measurements of high-temperature dielectric properties of municipal solid waste incinerator bottom ash, Ceram. Int., 45(2019), No. 15, p. 18751.

    Article  CAS  Google Scholar 

  15. Y.W. Xing, F.Y. Guo, M.D. Xu, X.H. Gui, H.S. Li, G.S. Li, Y.C. Xia, and H.S. Han, Separation of unburned carbon from coal fly ash: A review, Powder Technol., 353(2019), p. 372.

    Article  CAS  Google Scholar 

  16. J. Yang, S.G. Zhang, D.A. Pan, B. Liu, C.L. Wu, and A.A. Volinsky, Treatment method of hazardous pickling sludge by reusing as glass-ceramics nucleation agent, Rare Met., 35(2016), No. 3, p. 269.

    Article  CAS  Google Scholar 

  17. M.S. Cilla, M.D. de Mello Innocentini, M.R. Morelli, and P. Colombo, Geopolymer foams obtained by the saponification/peroxide/gelcasting combined route using different soap foam precursors, J. Am. Ceram. Soc., 100(2017), No. 8, p. 3440.

    Article  CAS  Google Scholar 

  18. X.Y. Zhang, N. Li, T. Lan, Y.J. Lu, K. Gan, J.M. Wu, W.L. Huo, J. Xu, and J.L. Yang, In-situ reaction synthesis of porous Si2N2O-Si3N4 multiphase ceramics with low dielectric constant via silica poly-hollow microspheres, Ceram. Int., 43(2017), No. 5, p. 4235.

    Article  CAS  Google Scholar 

  19. T.Y. Liu, J.S. Zhang, J.Q. Wu, J.L. Liu, C. Li, T.X. Ning, Z.W. Luo, X. Zhou, Q.F. Yang, and A.X. Lu, The utilization of electrical insulators waste and red mud for fabrication of partially vitrified ceramic materials with high porosity and high strength, J. Clean. Prod., 223(2019), p. 790.

    Article  CAS  Google Scholar 

  20. M.H.M. Zaid, K.A. Matori, H.J. Quah, W.F. Lim, H.A.A. Sidek, M.K. Halimah, W.M.M. Yunus, and Z.A. Wahab, Investigation on structural and optical properties of SLS-ZnO glasses prepared using a conventional melt quenching technique, J. Mater. Sci. Mater. Electron., 26(2015), No. 6, p. 3722.

    Article  CAS  Google Scholar 

  21. R.D. Jia, L.B. Deng, F. Yun, H. Li, X.F. Zhang, and X.L. Jia, Effects of SiO2/CaO ratio on viscosity, structure, and mechanical properties of blast furnace slag glass ceramics, Mater. Chem. Phys., 233(2019), p. 155.

    Article  CAS  Google Scholar 

  22. H. Elsayed, A.R. Romero, M. Picicco, J. Kraxner, D. Galusek, P. Colombo, and E. Bernardo, Glass-ceramic foams and reticulated scaffolds by sinter-crystallization of a hardystonite glass, J. Non Cryst. Solids, 528(2020), art. No. 119744.

  23. S.F. Zhang, X. Zhang, W. Liu, X. Lv, C.G. Bai, and L. Wang, Relationship between structure and viscosity of CaO-SiO2-Al2O3-MgO-TiO2 slag, J. Non Cryst. Solids, 402(2014), p. 214.

    Article  CAS  Google Scholar 

  24. L. Han, J. Song, C.W. Lin, J.L. Liu, T.Y. Liu, Q. Zhang, Z.W. Luo, and A.X. Lu, Crystallization, structure and properties of MgO-Al2O3-SiO2 highly crystalline transparent glass-ceramics nucleated by multiple nucleating agents, J. Eur. Ceram. Soc., 38(2018), No. 13, p. 4533.

    Article  CAS  Google Scholar 

  25. E.M.A. Khalil, F.H. ElBatal, Y.M. Hamdy, H.M. Zidan, M.S. Aziz, and A.M. Abdelghany, Infrared absorption spectra of transition metals-doped soda lime silica glasses, Physica B, 405(2010), No. 5, p. 1294.

    Article  CAS  Google Scholar 

  26. Y.M. Lai, Y.M. Zeng, X.L. Tang, H.W. Zhang, J. Han, and H. Su, Structural investigation of calcium borosilicate glasses with varying Si/Ca ratios by infrared and Raman spectroscopy, RSC Adv., 6(2016), No. 96, p. 93722.

    Article  CAS  Google Scholar 

  27. H. Gui, C. Li, C.W. Lin, Q. Zhang, Z.W. Luo, L. Han, J.L. Liu, T.Y. Liu, and A.X. Lu, Glass forming, crystallization, and physical properties of MgO-Al2O3-SiO2-B2O3 glass-ceramics modified by ZnO replacing MgO, J. Eur. Ceram. Soc., 39(2019), No. 4, p. 1397.

    Article  CAS  Google Scholar 

  28. L. Han, J. Song, Q. Zhang, Z.W. Luo, and A.X. Lu, Crystallization, structure and characterization of MgO-Al2O3-SiO2-P2O5 transparent glass-ceramics with high crystallinity, J. Non Cryst. Solids, 481(2018), p. 123.

    Article  CAS  Google Scholar 

  29. H. Yamada, S. Sukenaga, K. Ohara, C. Anand, M. Ando, H. Shibata, T. Okubo, and T. Wakihara, Comparative study of aluminosilicate glass and zeolite precursors in terms of Na environment and network structure, Microporous Mesoporous Mater., 271(2018), p. 33.

    Article  CAS  Google Scholar 

  30. D. Manara, A. Grandjean, and D.R. Neuville, Advances in understanding the structure of borosilicate glasses: A Raman spectroscopy study, Am. Mineral., 94(2009), No. 5–6, p. 777.

    Article  CAS  Google Scholar 

  31. S. Zhang, Y.L. Zhang, J.T. Gao, Z.M. Qu, and Z. Zhang, Effects of Cr2O3 and CaF2 on the structure, crystal growth behavior, and properties of augite-based glass ceramics, J. Eur. Ceram. Soc., 39(2019), No. 14, p. 4283.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National key R&D projects (Nos. 2019YFC1907101, 2019YFC1907103, 2017YFB0702304), the Key R&D project in Ningxia Hui Autonomous Region (No. 2020BCE01001), the National Natural Science Foundation of China (No. 51672024), the Xijiang Innovation and Entrepreneurship Team (No. 2017A0109004), the Program of China Scholarships Council (No. 201806465040), the Fundamental Research Funds for the Central Universities (Nos. FRF-IC-19-007, FRF-IC-19-017Z, FRF-MP-19-002, FRF-TP-19-003B1, FRF-GF-19-032B, and 06500141), the State Key Laboratory for Advanced Metals and Materials (No. 2019Z-05), and the Integration of Green Key Process Systems MIIT. The authors would like to thank the editor for editing of the manuscript and the anonymous reviewers for their detailed and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Zhang, Bo Liu or Shengen Zhang.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, X., Liu, B. et al. Phase evolution and properties of glass ceramic foams prepared by bottom ash, fly ash and pickling sludge. Int J Miner Metall Mater 29, 563–573 (2022). https://doi.org/10.1007/s12613-020-2219-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2219-5

Keywords

Navigation