Skip to main content
Log in

Dynamic mechanical and drilling behavior of Alstonia macrophylla fiber-reinforced polypropylene (PP) composites

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this work, dynamic mechanical analysis (DMA) and drilling behaviour of the alkali treated Alstonia macrophylla (AS) fiber-reinforced polypropylene (PP) composites were investigated. These PP/AS composites were fabricated using compression moulding technique by their varying fiber volume fractions (0, 10, 20, 30, 40 and 50 Vol%). Study revealed that DMA properties of the PP/AS composites increased with increase in the fiber content and 40 Vol% fiber loaded composites exhibited better than its counterparts and neat PP. Drilling was performed on the PP/AS composite at a constant spindle speed (2500 RPM) in a vertical CNC machine using L9 orthogonal array of Taguchi design of experiment. Effect of parameters, viz. drill point angle (90°, 118°, and 130°), feed rate (20, 40, and 60 mm/min) on drillability of the PP/AS was explored in terms of thrust force, torque and delamination factor. Results showed that better quality of the hole was produced if the PP/AS composites were drilled at lower feed rate using drill bit of minimum drill point angle. Analysis of variance showed that drill point angle influenced quality of the drill hole than feed rate. Field emission scanning electron microscopy was used to capture the images of the drilled surface in order to understand the delamination mechanism of the PP/AS composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Kumar SV, Kumar KS, Jailani HS, Rajamurugan G (2022) Mechanical, DMA and sound acoustic behaviour of flax woven fabric reinforced epoxy composites. Mater Res Express 7:085302

    Article  Google Scholar 

  2. Siva I, Jappes JT, Suresha B (2012) Investigation on mechanical and tribological behavior of naturally woven coconut sheath-reinforced polymer composites. Polym Compos 33:723–732. https://doi.org/10.1002/pc.22197

    Article  Google Scholar 

  3. Atagur M, Seki Y, Pasaoglu Y, Sever K, Seki Y, Sarikanat M, Altay L (2020) Mechanical and thermal properties of Carpinas betulus fiber filled polypropylene composites. Polym Compos 41(5):1925–1935. https://doi.org/10.1002/pc.25508

    Article  Google Scholar 

  4. Bajpai PK, Singh I (2013) Drilling behavior of sisal fiber–reinforced polypropylene composite laminates. J Reinf Plast Compos 32:1569–1576. https://doi.org/10.1177/0731684413492866

    Article  Google Scholar 

  5. Chauhan V, Kärki T, Varis J (2022) Review of natural fiber–reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. J Thermoplast Compos 35:1169–1209. https://doi.org/10.1177/089270571988909

    Article  Google Scholar 

  6. Helmi Abdul Kudus M, Ratnam MM, Akil HM (2021) Factors affecting hole quality during drilling of natural fiber–reinforced composites: a comprehensive review. J Reinf Plast Compos 40:391–405. https://doi.org/10.1177/07316844209706

    Article  Google Scholar 

  7. Puglia D, Santulli C, Sarasini F, Kenny JM, Valente T (2014) Thermal and mechanical characterisation of Phormium tenax-reinforced polypropylene composites. J Thermoplast Compos 27:1493–1503. https://doi.org/10.1177/0892705712473629

    Article  Google Scholar 

  8. Morales-Cepeda AB, Ponce-Medina ME, Salas-Papayanopolos H, Lozano T, Zamudio M, Lafleur PG (2015) Preparation and characterization of candelilla fiber (Euphorbia antisyphilitica) and its reinforcing effect in polypropylene composites. Cellulose 22:3839–3849. https://doi.org/10.1007/s10570-015-0776-y

    Article  Google Scholar 

  9. Magurno A (1999) Vegetable fibres in automotive interior components. Die Angew Makromol Chem 272(1):99–107

    Article  Google Scholar 

  10. Tajvidi M, Falk RH, Hermanson JC (2006) Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis. J Appl Polym Sci 101:4341–4349. https://doi.org/10.1002/app.24289

    Article  Google Scholar 

  11. Menard KP, Menard NR (2020) Dynamic mechanical analysis. CRC Press, Boca Raton

    Book  Google Scholar 

  12. Chatterjee A, Kumar S, Singh H (2020) Tensile strength and thermal behavior of jute fibre reinforced polypropylene laminate composite. Compos Commun 22:100483. https://doi.org/10.1016/j.coco.2020.100483

    Article  Google Scholar 

  13. Bassyouni M (2018) Dynamic mechanical properties and characterization of chemically treated sisal fiber–reinforced polypropylene biocomposites. J Reinf Plast Compos 37:1402–1417. https://doi.org/10.1177/07316844187980

    Article  Google Scholar 

  14. Karaduman YE, Sayeed MM, Onal L, Rawal A (2014) Viscoelastic properties of surface modified jute fiber/polypropylene nonwoven composites. Compos Part B Eng 67:111–118. https://doi.org/10.1016/j.compositesb.2014.06.019

    Article  Google Scholar 

  15. Guo CG, Song YM, Wang QW, Shen CS (2006) Dynamic-mechanical analysis and SEM morphology of wood flour/polypropylene composites. J For Res 17:315–318. https://doi.org/10.1007/s11676-006-0072-7

    Article  Google Scholar 

  16. Debnath K, Singh I, Dvivedi A (2014) Drilling characteristics of sisal fiber–reinforced epoxy and polypropylene composites. Mater Manuf Processes 29:1401–1409. https://doi.org/10.1080/10426914.2014.941870

    Article  Google Scholar 

  17. Yallew TB, Kumar P, Singh I (2016) A study about hole making in woven jute fabric-reinforced polymer composites. Proc Inst Mech Eng L J Mater 230:888–898. https://doi.org/10.1177/14644207155877

    Article  Google Scholar 

  18. Mudhukrishnan M, Hariharan P, Palanikumar K (2020) Measurement and analysis of thrust force and delamination in drilling glass fiber reinforced polypropylene composites using different drills. Measurement 149:106973. https://doi.org/10.1016/j.measurement.2019.106973

    Article  Google Scholar 

  19. Khyade MS, Kasote DM, Vaikos NP (2014) Alstonia scholaris (L.) R. Br. and Alstonia macrophylla Wall. ex G. Don: a comparative review on traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 153(1):1–8. https://doi.org/10.1016/j.jep.2014.01.025

    Article  Google Scholar 

  20. Velayudham A, Krishnamurthy R (2007) Effect of point geometry and their influence on thrust and delamination in drilling of polymeric composites. J Mater Process Tech 185:204–209. https://doi.org/10.1016/j.jmatprotec.2006.03.146

    Article  Google Scholar 

  21. Yardimeden A, Kilickap E, Celik YH (2014) Effects of cutting parameters and point angle on thrust force and delamination in drilling of CFRP. Mater Test 56:1042–1048. https://doi.org/10.3139/120.110666

    Article  Google Scholar 

  22. Heisel U, Pfeifroth T (2012) Influence of point angle on drill hole quality and machining forces when drilling CFRP. Procedia Cirp 1:471–476. https://doi.org/10.1016/j.procir.2012.04.084

    Article  Google Scholar 

  23. Sakthivelmurugan E, Senthilkumar G, Kumar SM, Singh H (2023) Cellulosic fiber extracted from Alstonia Macrophylla seed pods as a potential reinforcement for polymer composites. Cellul Chem Technol 55:39908. https://doi.org/10.35812/CelluloseChemTechnol.2023.57.35

    Article  Google Scholar 

  24. Karthik A, Sampath PS (2020) Analysis of thrust force in drilling cotton with bamboo blended fibre-reinforced composites using Box-Behnken methodology. Indian J Fibre Text 45:267–273

    Google Scholar 

  25. Dittenber DB, GangaRao HV (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A 43:1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  26. Fuqua MA, Chevali VS, Ulven CA (2013) Lignocellulosic byproducts as filler in polypropylene: comprehensive study on the effects of compatibilization and loading. J Appl Polym Sci 127:862–868. https://doi.org/10.1002/app.37820

    Article  Google Scholar 

  27. Karmaker AC, Schneider JP (1996) Mechanical performance of short jute fibre reinforced polypropylene. J Mater Sci Lett 15:201–202. https://doi.org/10.1007/BF00274450

    Article  Google Scholar 

  28. Chatterjee A, Singh H (2019) Development and characterization of peanut shell flour–polypropylene composite. J Inst Eng India Ser D 100:147–153

    Article  Google Scholar 

  29. Joseph PV, Mathew G, Joseph K, Groeninckx G, Thomas S (2003) Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites. Compos Part A Appl S 34:275–290. https://doi.org/10.1016/S1359-835X(02)00020-9

    Article  Google Scholar 

  30. Yang HS, Gardner D, Kim HJ (2009) Viscoelastic and thermal analysis of lignocellulosic material filled polypropylene bio-composites. J Therm Anal Calorim 98:553–558. https://doi.org/10.1007/s10973-009-0324-9

    Article  Google Scholar 

  31. Essabir H, Elkhaoulani A, Benmoussa K, Bouhfid R, Arrakhiz FZ, Qaiss A (2013) Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites. Mater Des 51:780–788. https://doi.org/10.1016/j.matdes.2013.04.092

    Article  Google Scholar 

  32. Joseph S, Appukuttan SP, Kenny JM, Puglia D, Thomas S, Joseph K (2010) Dynamic mechanical properties of oil palm microfibril-reinforced natural rubber composites. J Appl Polym Sci 117:1298–1308. https://doi.org/10.1002/app.30960

    Article  Google Scholar 

  33. Saba N, Jawaid M, Alothman OY, Paridah MT (2016) A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 106:149–159. https://doi.org/10.1016/j.conbuildmat.2015.12.075

    Article  Google Scholar 

  34. Luo Z, Li P, Cai D, Chen Q, Qin P, Tan T, Cao H (2017) Comparison of performances of corn fiber plastic composites made from different parts of corn stalk. Ind Crop Prod 95:521–527. https://doi.org/10.1016/j.indcrop.2016.11.005

    Article  Google Scholar 

  35. Jayabal S, Natarajan U (2010) Optimization of thrust force, torque, and tool wear in drilling of coir fiber–reinforced composites using Nelder-Mead and genetic algorithm methods. Int J Adv Manuf Technol 51:371–381. https://doi.org/10.1007/s00170-010-2605-7

    Article  Google Scholar 

  36. Jayabal S, Natarajan U (2011) Drilling analysis of coir-fibre-reinforced polyester composites. Bull Mater Sci 34:1563–1567

    Article  Google Scholar 

  37. Sathishkumar TP, Navaneethakrishnan P, Shankar S, Rajasekar R, Rajini N (2013) Characterization of natural fiber and composites—a review. J Reinf Plast Compos 32:1457–1476. https://doi.org/10.1177/0731684413495322

    Article  Google Scholar 

  38. Lotfi A, Li H, Dao DV, Prusty G (2021) Natural fiber–reinforced composites: a review on material, manufacturing, and machinability. J Thermoplast Compos 34:238–284. https://doi.org/10.1177/0892705719844546

    Article  Google Scholar 

  39. Lotfi A, Li H, Dao DV. Effect of drilling parameters on delamination and hole quality in drilling flax fiber reinforced bio-composites. In: Sustainable design and manufacturing 2018: proceedings of the 5th international conference on sustainable design and manufacturing (KES-SDM-18) 5 2019. Springer, pp 71–81

  40. Sheikh-Ahmad JY (2009) Machining of polymer composites. Springer, New York

    Book  Google Scholar 

  41. Rezghi Maleki H, Hamedi M, Kubouchi M, Arao Y (2019) Experimental study on drilling of jute fiber reinforced polymer composites. J Compos Mater 53:283–295. https://doi.org/10.1177/00219983187823

    Article  Google Scholar 

  42. Gaitonde V, Karnik SR, Rubio JC, Correia AE, Abrao AM, Davim JP (2008) Analysis of parametric influence on delamination in high-speed drilling of carbon fiber reinforced plastic composites. J Mater Process Technol 203:431–438. https://doi.org/10.1016/j.jmatprotec.2007.10.050

    Article  Google Scholar 

  43. Tsao CC, Hocheng H (2007) Effect of tool wear on delamination in drilling composite materials. Inter J Mech Sci 49:983–988. https://doi.org/10.1016/j.ijmecsci.2007.01.001

    Article  Google Scholar 

  44. Lotfi A, Li H, Dao DV (2018) Drilling behavior of flax/poly (lactic acid) bio-composite laminates: an experimental investigation. J Nat Fibers 17:1264–1280. https://doi.org/10.1080/15440478.2018.1558158

    Article  Google Scholar 

  45. Geng D, Liu Y, Shao Z, Zhang M, Jiang X, Zhang D (2020) Delamination formation and suppression during rotary ultrasonic elliptical machining of CFRP. Compos Part B Eng 183:107698. https://doi.org/10.1016/j.compositesb.2019.107698

    Article  Google Scholar 

  46. Sorrentino L, Turchetta S, Bellini C (2018) A new method to reduce delaminations during drilling of FRP laminates by feed rate control. Compos Struct 186:154–164. https://doi.org/10.1016/j.compstruct.2017.12.005

    Article  Google Scholar 

  47. Ho-Cheng H, Dharan CK (1990) Delamination during drilling in composite laminates. J Eng Ind 112:236–239. https://doi.org/10.1115/1.2899580

    Article  Google Scholar 

  48. Margabandu S, Subramaniam S (2020) An experimental investigation of thrust force, delamination and surface roughness in drilling of jute/carbon hybrid composites. World J Eng 17:661–674

    Article  Google Scholar 

  49. Choudhury MR, Srinivas MS, Debnath K (2018) Experimental investigations on drilling of lignocellulosic fiber reinforced composite laminates. J Manuf Process 34:51–61. https://doi.org/10.1016/j.jmapro.2018.05.032

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sakthivelmurugan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakthivelmurugan, E., Senthil Kumar, G., Vinu Kumar, S.M. et al. Dynamic mechanical and drilling behavior of Alstonia macrophylla fiber-reinforced polypropylene (PP) composites. J Braz. Soc. Mech. Sci. Eng. 45, 400 (2023). https://doi.org/10.1007/s40430-023-04339-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04339-y

Keywords

Navigation