Skip to main content
Log in

Preparation and characterization of candelilla fiber (Euphorbia antisyphilitica) and its reinforcing effect in polypropylene composites

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Candelilla bagasse fiber (CBF) was prepared by a mesh sieve and ball-milling process and its reinforcing effect in a polymer matrix analyzed. Composites of polypropylene (PP) and CBF were prepared by melt blending with varying amounts (20, 25, and 30 wt%) of fiber using maleic anhydride PP as coupling agent. The chemical composition of CBF was analyzed according to Technological Association of the Pulp and Paper Industry (TAPPI) methods, and the morphology and thermal and chemical properties of CBF and its composites were analyzed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and tensile testing. In general, fibers extracted from candelilla by a reduction process are comparable in terms of micro- and nanostructure to other lignocellulosic fibers. Dynamic light scattering (DLS) results reveal that sieve-milling reduces the fiber size. The results also show that the thermal stability of PP was enhanced when using CBF, but the crystallinity index of the PP composites decreased slightly according to DSC and XRD results. Furthermore, the Young’s modulus was increased in PP/CBF samples with and without MAPP to obtain improved wettability and fiber–polymer adhesion. We found that CBF is an excellent alternative to replace conventional materials or synthetic fibers, as well as for reinforcement in polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336

    Article  CAS  Google Scholar 

  • Canales E, Canales-Martinez V, Zamarron EM (2006) Candelilla, del desierto mexicano hacia el mundo. CONABIO. Biodiversitas 69:1–5

    Google Scholar 

  • Cao Y, Chan F, Chui Y, Xiao H (2012) Characterization of flax fibres modified by alkaline, enzyme, and steam-heat treatments. BioResources 7:4109–4121

    Google Scholar 

  • Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234

    Article  CAS  Google Scholar 

  • Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK (2010) Mechanical, thermal, and morphological properties of maleic anhydride-g-polypropylene compatibilized and chemically modified banana-fiber-reinforced polypropylene composites. J Appl Polym Sci 117:1731–1740

    CAS  Google Scholar 

  • Chen H, Shi X, Zhu Y, Zhang Y, Xu J (2008) Synthesis and characterization of macromolecular surface modifier PP-g-PEG for polypropylene. Front Chem Eng Chin 2:102–108

    Article  CAS  Google Scholar 

  • De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122

    Article  Google Scholar 

  • Doan T-T-L, Gao S-L, Mader E (2006) Jute/polypropylene composites I. Effect of matrix modification. Compos Sci Technol 66:952–963

    Article  CAS  Google Scholar 

  • Fink HP, Hofmann D, Philipp B (1995) Some aspects of lateral chain order in cellulosics from X-ray scattering. Cellulose 2:51–70

    CAS  Google Scholar 

  • Foulk JA, Fuqua MA, Ulven CA, Alcock MM (2010) Flax fibre quality and influence on interfacial properties of composites. Int J Sust Eng 3:17–24

    Article  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gallagher LW, McDonald AG (2013) The effect of micron sized wood fibers in wood plastics composites. Maderas. Cienc y Tecnol 15:357–374

    CAS  Google Scholar 

  • Haque MM, Islam MS, Islam MN (2012) Preparation and characterization of polypropylene composites reinforced with chemically treated coir. J Polym Res 19:9847–9854

    Article  Google Scholar 

  • Herrera-Franco PJ, Valadez-Gonzalez A (2005) A study of the mechanical properties of short natural-fiber reinforced composites. Compos B 36:597–608

    Article  Google Scholar 

  • Howsmon JA, Marchessault RH (1959) The ball-milling of cellulose fibers and recrystallization effects. J Appl Polym Sci 1:313–322

    Article  CAS  Google Scholar 

  • Huang Z, Wang N, Zhang Y, Hu H, Luo Y (2012) Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly(vinyl chloride) composites. Compos Pt A 43:114–120

    Article  Google Scholar 

  • Hult EL, Iversen T, Sugiyama J (2003) Characterization of the supermolecular structure of cellulose in wood pulp fibres. Cellulose 10:103–110

    Article  CAS  Google Scholar 

  • Jakovek JL, Backhaus RA, Herman K (1986) Micropropagation of candelilla, Euphorbia antysiphilitica Zucc. Plant Cell Tissue Organ Cult 7:145–148

    Article  Google Scholar 

  • Jarukumjorn K, Suppakarn N (2009) Mechanical properties and flammability of sisal/PP composites: effect of flame retardant type and content. Compos Pt B 40:613–618

    Google Scholar 

  • Joseph PV, Joseph K, Thomas S (1999) Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Compos Sci Technol 59:1625–1640

    Article  CAS  Google Scholar 

  • Joseph PV, Joseph K, Thomas S, Prasad VS, Groeninckx G, Sarkissova M (2003) The thermal and crystallization studies of short sisal fibre reinforced polypropylene composites. Compos Pt A 34:253–266

    Article  Google Scholar 

  • Julson JL, Subbrarao G, Stokke DD, Gieselman HH, Muthukumarappan K (2004) Mechanical properties of biorenewable fiber/plastic composites. J Appl Polym Sci 93:2484–2493

    Article  CAS  Google Scholar 

  • Kalia S, Kaith BS, Karnani Kaur I (2011) Cellulose fibers: bio-and nano-polymer composites. Springer, New York

    Book  Google Scholar 

  • Karacan I, Benli H (2011) A x-ray diffraction study for isotactic polypropylene fibres produced with take-up speeds of 2500–4250 m/min. Tekstil ve Konfeksiyon 3:201–209

    Google Scholar 

  • Karian HG (2003) Handbook of polypropylene and polypropylene composites. Rhe Tech Inc, Michigan

    Book  Google Scholar 

  • Karnani R, Krishnan M, Narayan R (1997) Biofiber-reinforced polypropylene composites. Polym Eng Sci 37:476–483

    Article  CAS  Google Scholar 

  • Khalina A, Zainuddin ES, Aji IS (2011) Rheological behaviour of polypropylene/kenaf fibre composite: effect of fibre size. Key Eng Mater 471:513–517

    Article  Google Scholar 

  • Lamberti G, Brucato V (2003) Real-time orientation and crystallinity measurements during the isotactic polypropylene film-casting process. J Polym Sci B: Polym Phys 41:998–1008

    Article  CAS  Google Scholar 

  • Law A, Simon L, Lee-Sullivan P (2008) Effects of thermal aging on isotactic polypropylene crystallinity. Polym Eng Sci 48:627–633

    Article  CAS  Google Scholar 

  • Lewin M (2007) Handbook of fiber chemistry. Taylor & Francis Group, USA

    Google Scholar 

  • Liao Z, Huang Z, Hu H, Zhang Y, Tan Y (2011) Microscopic structure and properties changes of cassava stillage residue. Bioresour Technol 102:7953–7958

    Article  CAS  Google Scholar 

  • Morales-Rueda JA, Dibildox-Alvarado E, Charo-Alonso MA, Weiss RG, Toro-Vazquez JF (2009) Thermo mechanical properties of candelilla wax and dotriacontane organogels in safflower oil. Eur J Lip Sci Technol 111:207–215

    Article  CAS  Google Scholar 

  • Mukherjee PS, Satyanarayana KG (1986) Structure and properties of some vegetable fibres. J Mater Sci 21:51–56

    Article  Google Scholar 

  • Mutjé P, Vallejos ME, Girones J, Villaseca F, Lopez A, Lopez JP, Mendez JA (2006) Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands. J Appl Polym Sci 102:833–840

    Article  Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84(12):2222–2234

    Article  CAS  Google Scholar 

  • Nabi-Saheb D, Jog JP (1999) Natural fiber composites: a review. Adv Polym Technol 18:351–363

    Article  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in cellulose I and II. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  • Novak I, Florian S (2001) Study of the change in polarity of polypropylene modified in bulk by polar copolymers. J Mater Sci 36:4863–4867

    Article  CAS  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Olson AM, Salmen L (2004) The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. Carbohydr Res 339:813–818

    Article  Google Scholar 

  • Paiva MC, Ammar I, Campos AR, Cheikh RB, Cunha AM (2007) Alfa fibres: mechanical, morphological and interfacial characterization. Compos Sci Technol 67:1132–1138

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parrilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnol Biofuels 3:1–10

    Article  Google Scholar 

  • Parthasarthy G, Sevegney M, Kannan RM (2002) Rheooptical Fourier transformed infrared spectroscopy of the deformation behavior in quenched and slow-cooled isotactic polypropylene films. J Polym Sci B: Polym Phys 40:2539–2551

    Article  CAS  Google Scholar 

  • Poletto M, Ornaghi-Junior HL, Zattera AJ (2014) Native cellulose: structure, characterization and thermal properties. Materials 7:6105–6119

    Article  CAS  Google Scholar 

  • Popescu MC, Popescu CM, Lisa G, Sakata Y (2011) Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J Mol Struct 988:65–72

    Article  CAS  Google Scholar 

  • Qiu W, Endo T, Hirotsu T (2006) Interfacial interaction, morphology, and tensile properties of a composite of highly crystalline cellulose and maleated polypropylene. J Appl Polym Sci 102:3830–3841

    Article  CAS  Google Scholar 

  • Robin JJ, Breton Y (2001) Reinforcement of recycled polyethylene with wood fibers heated. J Reinf Plast Compos 20:1253–1262

    CAS  Google Scholar 

  • Rojas-Molina R, De Leon-Zapata MA, Saucedo-Pompa S, Aguilar-Gonzalez MA, Aguilar CN (2013) Chemical and structural characterization of candelilla (Euphorbia antisyphilitica Zucc). J Med Plants Res 7:702–705

    CAS  Google Scholar 

  • Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273

    Article  Google Scholar 

  • Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgensrahlen. Nachr Ges Wiss Goettingen 2:98–100

    Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffraction. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sena-Neto AR, Araujo MAM, Souza FVD, Mattoso HC (2013) Characterization and comparative evaluation of thermal, structural, chemical, mechanical and morphological properties of six pineapple leaf fiber varieties for use in composites. Indus Crops Prod 43:529–537

    Article  CAS  Google Scholar 

  • Turner-Jones A, Aizlewood JM, Beckett DR (1963) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134–158

    Article  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Zhang Y, Gan T, Li Q, Su J, Lin Y, Wei Y, Huang Z, Yang M (2014) Mechanical and interfacial properties of poly(vinyl chloride) based composites reinforced by cassava stillage residue with different surface treatments. Appl Surf Sci 314:603–609

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Multiceras for donation of candelilla bagasse. The authors are grateful to Indelpro for kind donation of polypropylene (Profax-6523).

Funding

This work was supported financially by the Consejo Nacional de Ciencia y Tecnología (CONACyT grant number 331799).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana B. Morales-Cepeda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Cepeda, A.B., Ponce-Medina, M.E., Salas-Papayanopolos, H. et al. Preparation and characterization of candelilla fiber (Euphorbia antisyphilitica) and its reinforcing effect in polypropylene composites. Cellulose 22, 3839–3849 (2015). https://doi.org/10.1007/s10570-015-0776-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-015-0776-y

Keywords

Navigation