Skip to main content
Log in

Dimensional synthesis of rack-and-pinion steering mechanism using a novel synthesis equation

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This article presents a method for the dimensional synthesis of the rack-and-pinion steering mechanism by optimization technique based on a novel synthesis equation. The proposed kinematic model allows obtaining a polynomial synthesis equation to formulate the objective function as a sum of squares. Then, the computation of the objective function derivatives is straightforward compared to existing formulations. Finally, the application of the proposed method is shown through a numerical example implemented in Matlab®.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

δ :

Steering angle

Y ijk :

Bilateration matrix

s ij :

Square distance between points i and j.

f :

Synthesis equation

z :

Design variables vector

g :

Objective function

References

  1. Romero N, Flórez E, Mendoza L (2017) Optimization of a multi-link steering mechanism using a continuous genetic algorithm. J Mech Sci Technol. https://doi.org/10.1007/s12206-017-0607-1

    Article  Google Scholar 

  2. Jazar RN (2014) Vehicle dynamics. Springer, New York. https://doi.org/10.1007/978-1-4614-8544-5

    Book  Google Scholar 

  3. Simionescu PA, Hoeltgebaum T, Martins D (2022) On the evolution of automotive steering mechanisms. Springer, Cham, pp 116–128. https://doi.org/10.1007/978-3-030-99826-4_11

    Book  Google Scholar 

  4. Reimpell J, Stoll H, Betzler JW (2001) The automotive chassis. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-7506-5054-0.X5000-7

    Book  Google Scholar 

  5. Collard J-FF (2007) Geometrical and kinematic optimization of closed-loop multibody systems. Université Catholique de Louvain, Ottignies-Louvain-la-Neuve

    Google Scholar 

  6. Zarak CE, Townsend MA (1983) Optimal design of rack-and-pinion steering linkages. J Mech Transm Autom Des 105(2):220–226. https://doi.org/10.1115/1.3258512

    Article  Google Scholar 

  7. Simionescu PA, Smith MR, Tempea I (2000) Synthesis and analysis of the two loop translational input steering mechanism. Mech Mach Theory 35(7):927–943. https://doi.org/10.1016/S0094-114X(99)00056-7

    Article  MATH  Google Scholar 

  8. Simionescu PA, Smith MR (2000) Initial estimates in the design of rack-and-pinion steering linkages. J Mech Des 122(2):194–200. https://doi.org/10.1115/1.533560

    Article  Google Scholar 

  9. Simionescu PA, Smith MR (2000) Applications of Watt II function generator cognates. Mech Mach Theory 35(11):1535–1549. https://doi.org/10.1016/S0094-114X(00)00011-2

    Article  MATH  Google Scholar 

  10. Sleesongsom S, Bureerat S (2016) Multiobjective optimization of a steering linkage. J Mech Sci Technol 30(8):3681–3691. https://doi.org/10.1007/s12206-016-0730-4

    Article  Google Scholar 

  11. Zhang X, Kou F, Wang G, Xu J (2023) Computation and optimization of rack and pinion steering mechanism considering kingpin parameters and tire side slip angle. J Mech Sci Technol 37(1):81–94. https://doi.org/10.1007/s12206-022-1209-0

    Article  Google Scholar 

  12. Buzzi BF, Romero NN, Martins D, de Souza Vieira R (2021) Dimensional synthesis of a two-axles steering system. Springer, Berlin, pp 57–64. https://doi.org/10.1007/978-3-030-60372-4_7

    Book  Google Scholar 

  13. Yao J, Angeles J (2000) The kinematic synthesis of steering mechanisms. Trans Can Soc Mech Eng 24(3–4):453–476

    Article  Google Scholar 

  14. Pradhan D, Ganguly K, Swain B, Roy H (2021) Optimal kinematic synthesis of 6 bar rack and pinion Ackerman steering linkage. Proc Inst Mech Eng Part D J Autom Eng 235(6):1660–1669. https://doi.org/10.1177/0954407020974497

    Article  Google Scholar 

  15. Barbosa Brandão Lima T, Fontanelle Pereira G, Morlin FV, Baldissera de Souza M, Martins D (2019) Dimensional synthesis of three-axle semi-trailer steering mechanism. In Proceedings of the 25th international congress of mechanical engineering, ABCM. https://doi.org/10.26678/ABCM.COBEM2019.COB2019-1323.

  16. Pramanik S, Thipse SS (2020) Kinematic synthesis of central-lever steering mechanism for four wheel vehicles. Acta Polytech 60(3):252–258. https://doi.org/10.14311/AP.2020.60.0252

    Article  Google Scholar 

  17. Sleesongsom S, Bureerat S (2020) Multi-objective, reliability-based design optimization of a steering linkage. Appl Sci 10(17):5748. https://doi.org/10.3390/app10175748

    Article  Google Scholar 

  18. Chang Q, Zhou C, Wei P, Zhang Y, Yue Z (2021) A new non-probabilistic time-dependent reliability model for mechanisms with interval uncertainties. Reliab Eng Syst Saf 215:107771. https://doi.org/10.1016/j.ress.2021.107771

    Article  Google Scholar 

  19. Hartenberg R, Danavit J (1964) Kinematic synthesis of linkages. McGraw-Hill, New York

    Google Scholar 

  20. Rojas N (2012) Distance-based formulations for the position. Universitat Poliècnica De Catalunya, Barcelona

    Google Scholar 

  21. Rojas N, Thomas F (2012) On closed-form solutions to the position analysis of Baranov trusses. Mech Mach Theory 50:179–196. https://doi.org/10.1016/j.mechmachtheory.2011.10.010

    Article  Google Scholar 

  22. Popescu I, Luca L, Cherciu M, Marghitu DB (2020) Kinematic analysis of planar mechanisms. Elsevier, Amsterdam, pp 21–44. https://doi.org/10.1007/978-3-030-42168-7_2

    Book  MATH  Google Scholar 

  23. Leydold J, Petry M (2016) Introduction to Maxima for Economics, Institute for Statistics and Mathematics. WU Wien https://statmath.wu.ac.at/~leydold/maxima/MaximaSkript.pdf

  24. Huang X, Zhang Y (2010) Reliability sensitivity analysis for rack-and-pinion steering linkages. J Mech Des. https://doi.org/10.1115/1.4001901

    Article  Google Scholar 

  25. Sancibrian R, De-Juan A, Garcia P, Viadero F, Fernandez A (2007) Optimal design of steering mechanisms in road vehicles. In: Volume 8: 31st mechanisms and robotics conference, Parts A and B, ASMEDC, pp 399–407. https://doi.org/10.1115/DETC2007-34422

  26. Rahmani Hanzaki A, Rao PVM, Saha SK (2009) Kinematic and sensitivity analysis and optimization of planar rack-and-pinion steering linkages. Mech Mach Theory 44(1):42–56. https://doi.org/10.1016/j.mechmachtheory.2008.02.014

    Article  MATH  Google Scholar 

  27. Angeles J, Bernier A (1987) The global least-square optimization of function-generating linkages. J Mech Transm Autom Des 109(2):204–209. https://doi.org/10.1115/1.3267439

    Article  Google Scholar 

  28. Kahaner D, Moler C, Nash S (1989) Numerical methods and software. Prentice-Hall Inc., Hoboken

    MATH  Google Scholar 

  29. Sommese AJ, Wampler CW II (2005) The numerical solution of systems of polynomials. World Scientific Publishing, Notre Dame

    Book  MATH  Google Scholar 

  30. De-Juan A, Sancibrian R, Viadero F (2012) Optimal synthesis of function generation in steering linkages. Int J Automot Technol 13(7):1033–1046. https://doi.org/10.1007/s12239-012-0106-4

    Article  Google Scholar 

  31. Martins JRRA, Ning A (2021) Engineering design optimization. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781108980647

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenacão de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and CAPES- PRINT/UFSC AUXPE 2835/2018 and CNPq under project PQ 312117/2017-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neider Nadid Romero Nuñez.

Additional information

Technical Editor: Rogério Sales Gonçalves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Transformation matrix

Appendix 1: Transformation matrix

This appendix presents all the coefficients of the fourth-degree polynomial expressed in Eq. (13).

$$\begin{aligned} r_{1} = & 2(c_{o} + c_{i} - 2) \\ r_{2} = & 4(s_{o} - s_{i} ) \\ r_{3} = & 6( - c_{o} + c_{i} + 2)w \\ r_{4} = & 8( - s_{o} + s_{i} )w \\ r_{5} = & 6(c_{o} + c_{i} - 2)w^{2} \\ r_{6} = & 4(s_{o} - s_{i} )w^{2} \\ r_{7} = & - 2(c_{o} + c_{i} - 2)w^{3} \\ r_{8} = & (3c_{o}^{2} + 10c_{i} c_{o} - 8c_{o} + 3c_{i}^{2} - 8c_{i} ) \\ r_{9} = & 8(c_{o} + c_{i} )(s_{o} - s_{i} ) \\ r_{10} = & 4(s_{o} + s_{i} )^{2} \\ r_{11} = & - 2(3c_{o}^{2} + 10c_{i} c_{o} - 8c_{o} + 3c_{i}^{2} - 8c_{i} )w \\ r_{12} = & - 8(c_{o} + c_{i} )(s_{o} - s_{i} )w \\ r_{13} = & (3c_{o}^{2} + 10c_{i} c_{o} - 8c_{o} + 3c_{i}^{2} - 8c_{i} )w^{2} \\ r_{14} = & 4(c_{o} + c_{i} )(2c_{i} c_{o} - c_{o} - c_{i} ) \\ r_{15} = & 8(c_{o} + c_{i} )(c_{i} s_{o} - c_{o} s_{i} ) \\ r_{16} = & - 4(c_{o} + c_{i} )(2c_{i} c_{o} - c_{o} - c_{i} )w \\ r_{17} = & 2(s_{o} - s_{i} ) \\ r_{18} = & - 4(c_{o} + c_{i} - 2) \\ r_{19} = & - 6(s_{o} - s_{i} )w \\ r_{20} = & 8(c_{o} + c_{i} - 2)w \\ r_{21} = & 6(s_{o} - s_{i} )w^{2} \\ r_{22} = & - 4(c_{o} + c_{i} - 2)w^{2} \\ r_{23} = & - 2(s_{o} - s_{i} )w^{3} \\ r_{24} = & 2(3c_{o} s_{o} + 5c_{i} s_{o} - 4s_{o} - 5c_{o} s_{i} - 3c_{i} s_{i} + 4s_{i} ) \\ r_{25} = & 8(s_{o}^{2} - 2s_{i} s_{o} + s_{i}^{2} - c_{o}^{2} - 2c_{i} c_{o} + 2c_{o} - c_{i}^{2} + 2c_{i} ) \\ r_{26} = & - 8(c_{o} - c_{i} )(s_{o} + s_{i} ) \\ r_{27} = & - 4(3c_{o} s_{o} + 5c_{i} s_{o} - 4s_{o} - 5c_{o} s_{i} - 3c_{i} s_{i} + 4s_{i} )w \\ r_{28} = & - 8(s_{o}^{2} - 2s_{i} s_{o} + s_{i}^{2} - c_{o}^{2} - 2c_{i} c_{o} + 2c_{o} - c_{i}^{2} + 2c_{i} )w \\ r_{29} = & 2(3c_{o} s_{o} + 5c_{i} s_{o} - 4s_{o} - 5c_{o} s_{i} - 3c_{i} s_{i} + 4s_{i} )w^{2} \\ r_{30} = & 8(2c_{i} c_{o} s_{o} - c_{o} s_{o} + c_{i}^{2} s_{o} - c_{i} s_{o} - c_{o}^{2} s_{i} - 2c_{i} c_{o} s_{i} + c_{o} s_{i} + c_{i} s_{i} ) \\ r_{31} = & 8(c_{i} s_{o}^{2} - 3c_{o} s_{i} s_{o} - 3c_{i} s_{i} s_{o} + c_{o} s_{i}^{2} - 2c_{i} c_{o}^{2} + c_{o}^{2} - 2c_{i}^{2} c_{o} + 2c_{i} c_{o} + c_{i}^{2} ) \\ r_{32} = & - 8(2c_{i} c_{o} s_{o} - c_{o} s_{o} + c_{i}^{2} s_{o} - c_{i} s_{o} - c_{o}^{2} s_{i} - 2c_{i} c_{o} s_{i} + c_{o} s_{i} + c_{i} s_{i} )w \\ r_{33} = & (s_{o} - 3s_{i} )(3s_{o} - s_{i} ) \\ r_{34} = & - 8(c_{o} + c_{i} - 2)(s_{o} - s_{i} ) \\ r_{35} = & 4(c_{o} - c_{i} )^{2} \\ r_{36} = & - 2(s_{o} - 3s_{i} )(3s_{o} - s_{i} )w \\ r_{37} = & 8(c_{o} + c_{i} - 2)(s_{o} - s_{i} )w \\ r_{38} = & (s_{o} - 3s_{i} )(3s_{o} - s_{i} )w^{2} \\ r_{39} = & 4(2c_{i} s_{o}^{2} - s_{o}^{2} - 4c_{o} s_{i} s_{o} - 4c_{i} s_{i} s_{o} + 2s_{i} s_{o} + 2c_{o} s_{i}^{2} - s_{i}^{2} ) \\ r_{40} = & - 8(2s_{i} s_{o}^{2} - 2s_{i}^{2} s_{o} + 3c_{i} c_{o} s_{o} - 2c_{o} s_{o} + c_{i}^{2} s_{o} - 2c_{i} s_{o} - c_{o}^{2} s_{i} - 3c_{i} c_{o} s_{i} + 2c_{o} s_{i} + 2c_{i} s_{i} ) \\ r_{41} = & - 4(2c_{i} s_{o}^{2} - s_{o}^{2} - 4c_{o} s_{i} s_{o} - 4c_{i} s_{i} s_{o} + 2s_{i} s_{o} + 2c_{o} s_{i}^{2} - s_{i}^{2} )w \\ r_{42} = & - 8s_{i} s_{o} (s_{o} - s_{i} ) \\ r_{43} = & - 8(s_{o} - s_{i} )(c_{i} s_{o} - s_{o} - c_{o} s_{i} + s_{i} ) \\ r_{44} = & 8s_{i} s_{o} (s_{o} - s_{i} )w \\ \end{aligned}$$

where \(s_{i} = \sin \delta_{i}\), \(s_{o} = \sin \delta_{o}\), \(c_{i} = \cos \delta_{i}\), \(c_{o} = \cos \delta_{o}\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuñez, N.N.R., Florez, A.R., Vieira, R.S. et al. Dimensional synthesis of rack-and-pinion steering mechanism using a novel synthesis equation. J Braz. Soc. Mech. Sci. Eng. 45, 411 (2023). https://doi.org/10.1007/s40430-023-04317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04317-4

Keywords

Navigation