Skip to main content
Log in

Transmission characteristics analysis and disturbance compensation control strategy for two-inertia system with a flexible link

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In the process of rotation, a two-inertia system with a flexible link (TISFL) will have the phenomenon of output speed fluctuation under the influence of flexible factors and external disturbances. The output speed fluctuation will excite the vibration of the TISFL and reduce the tracking error of the flexible link. To suppress output speed fluctuation, the proportional-integral control method containing the disturbance observer (DOB) is proposed. First, the mathematical equations of the TISFL are obtained by the flexible beams’ vibration differential equations. Next, the transmission characteristics of the TISFL and the effect of nonlinear terms on modeling accuracy are analyzed according to dynamic equations. Then, the filter parameters in the DOB are determined using the robust stability theorem. The rotation accuracy of the TISFL is improved by compensating for disturbances torque by the DOB. Finally, simulation and control experiments of the TISFL show that the proposed control method can weaken output speed fluctuation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Li F, Li X, Guo Y, Shang D (2021) Analysis of contact mechanical characteristics of flexible parts in harmonic gear reducer. Shock Vib 2021(4):1–17

    Google Scholar 

  2. Shang D, Li X, Yin M, Li F (2022) Dynamic modeling and control for dual-flexible servo system considering two-dimensional deformation based on neural network compensation. Mech Mach Theory 175:104954

    Article  Google Scholar 

  3. Vicente F, Emiliano P, Diaz IM (2014) Passivity-based control of single-link flexible manipulators using a linear strain feedback. Mech Mach Theory 71:191–208

    Article  Google Scholar 

  4. Moghanni-Bavil-Olyaei M-R, Ghanbari A, Keighobadi J (2019) Trajectory tracking control of a class of underactuated mechanical systems with nontriangular normal form based on block backstepping approach. J Intell Robot Syst 99(2):209–221

    Article  Google Scholar 

  5. Li W, Cheng D, Liu X, Wang Y et al (2019) On-orbit service (OOS) of spacecraft: a review of engineering developments. Prog Aerosp Sci 108:32–120

    Article  Google Scholar 

  6. Korayem MH, Dehkordi SF (2019) Dynamic modeling of flexible cooperative mobile manipulator with revolute-prismatic joints for the purpose of moving common object with closed kinematic chain using the recursive Gibbs-Appell formulation. Mech Mach Theory 137:254–279

    Article  Google Scholar 

  7. Shang D, Li X, Yin M et al (2021) Speed control method for dual-flexible manipulator with a telescopic arm considering bearing friction based on adaptive PI controller with DOB. Alex Eng J 61(6):4741–4756

    Article  Google Scholar 

  8. Astrom KJ, Canudas-De-Wit C (2008) Revisiting the LuGre friction model. IEEE Control Syst Mag 28(6):101–114

    Article  MathSciNet  MATH  Google Scholar 

  9. Xiang W, Yan S, Wu J (2019) Dynamic analysis of planar mechanical systems considering stick-slip and Stribeck effect in revolute clearance joints. Nonlinear Dyn 95(1):321–341

    Article  Google Scholar 

  10. Huang C, Li L, Wang XY (2021) Comparative study of two types of control loops aiming at trajectory tracking of a steer-by-wire system with Coulomb friction. Proc Inst Mech Eng Part D J Automob Eng 235(1):16–31

    Article  Google Scholar 

  11. He W, Wang T, He X, Yang L et al (2020) Dynamical modeling and boundary vibration control of a rigid-flexible wing system. IEEE-ASME Trans Mechatron 25(6):2711–2721

    Article  Google Scholar 

  12. He W, Ge SS (2015) Vibration control of a flexible string with both boundary input and output constraints. IEEE Trans Control Syst Technol 23(4):1245–1254

    Article  Google Scholar 

  13. Halim D, Luo X, Trivailo PM (2014) Decentralized vibration control of a multi-link flexible robotic manipulator using smart piezoelectric transducers. Acta Astronaut 104(1):186–196

    Article  Google Scholar 

  14. Qiu Z, Xu Y (2016) Vibration control of a rotating two-connected flexible beam using chattering-free sliding mode controllers. Proc Inst Mech Eng Part G J Aerosp Eng 230(3):444–468

    Article  Google Scholar 

  15. Li X, Shang D, Li F et al (2021) The climbing performance analysis of a robot for power line inspection with retractable double serial manipulators. Proc Inst Mech Eng Part C J Mech Eng Sci

  16. Mattioni A, Wu Y, Gorrec Y (2020) Infinite dimensional model of a double flexible-link manipulator: the Port-Hamiltonian approach. Appl Math Model 83:59–75

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhao Z, Ahn CK (2021) Boundary output constrained control for a flexible beam system with prescribed performance. IEEE Trans Syst Man Cybern Syst 51(8):4650–4658

    Article  Google Scholar 

  18. Zhao Z, Liu Z, He W et al (2021) Boundary adaptive fault-tolerant control for a flexible Timoshenko arm with backlash-like hysteresis. Automatica 130:109

    Article  MathSciNet  MATH  Google Scholar 

  19. Fareh R, Al-Shabi M, Bettayeb M (2020) Robust active disturbance rejection control for flexible link manipulator. Robotica 38(1):118–135

    Article  Google Scholar 

  20. Yun J, Su J et al (2013) Robust disturbance observer for two-inertia system. IEEE Trans Ind Electron 60(7):2700–2710

    Article  Google Scholar 

  21. Shang D, Li X, Yin M, Li F (2021) Control method of flexible manipulator servo system based on a combination of RBF neural network and pole placement strategy. Mathematics 9(8):1–32

    Article  Google Scholar 

  22. Shang D, Li X, Yin M et al (2022) Dynamic Modeling and fuzzy compensation sliding mode control for flexible manipulator servo system. Appl Math Model 107:530–556

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhao Z, He X, An C (2021) Boundary disturbance observer-based control of a vibrating single-link flexible manipulator. IEEE Trans Syst Man Cybern Syst 51(4):2382–2390

    Article  Google Scholar 

  24. Hosseini-Pishrobat M, Keighobadi J, Oveisi A, Nestorovic T (2018) Robust linear output regulation using extended state observer. Math Probl Eng 2018:4095473

    Article  MathSciNet  MATH  Google Scholar 

  25. Keighobadi J, Hosseini-Pishrobat M, Faraji J (2020) Adaptive neural dynamic surface control of mechanical systems using integral terminal sliding mode. Neurocomputing 379(28):141–151

    Article  Google Scholar 

  26. Shang D, Li X, Yin M, Li F (2022) Vibration suppression for two-inertia system with variable-length flexible load based on neural network compensation sliding mode controller and angle-independent method. IEEE/ASME Trans Mechatron (2022)

  27. Li X, Shang D, Li H et al (2020) Resonant suppression method based on PI control for Serial manipulator servo drive system. Sci Prog 103(3):1–39

    Article  MathSciNet  Google Scholar 

  28. Chen Y, Yang M, Long J et al (2019) Analysis of oscillation frequency deviation in elastic coupling digital drive system and robust notch filter strategy. IEEE Trans Ind Electron 66(1):90–101

    Article  Google Scholar 

  29. Damaren C, Sharf I (1995) Simulation of flexible-link manipulators with inertial and geometric nonlinearities. J Dyn Syst Meas Control-Trans ASME 117(1):74–87

    Article  MATH  Google Scholar 

  30. Shao M, Huang Y et al (2020) Intelligent manipulator with flexible link and joint: modeling and vibration control. Shock Vib 2020:1–15

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial support from the Liaoning Province Applied Basic Research Program Project (2023JH2/101300159), the National Natural Science Foundation of China (Grant No. 52275090) and the Natural Science Foundation of Ningxia Province (No.2020AAC03279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyang Shang.

Additional information

Technical Editor: Adriano Almeida Gonçalves Siqueira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The calculation process of the nominal transfer function and the actual transfer in numerical simulation is shown below.

In Table 2, the flexible link length is set as 0.8 m. This paper assumes that the nominal length of the flexible link is 0.8 m. Under this nominal length, the transfer function obtained according to Eq. (21) is called the nominal transfer function, and its specific value is shown in Eq. (44).

$$G_{{n_{1} }} \left( s \right) = \frac{{{ 0}{\text{.007074}}s^{4} + 5147s^{2} + 6.038 \times {10}^{6} }}{{2.829 \times {10}^{ - 4} {\text{s}}^{5} { + 196}s^{3} + 1.696 \times {10}^{6} s}}$$
(44)

However, due to the measurement error, the actual length of the flexible link is not 0.8 m. This leads to the modeling error between the actual model and the nominal model. In order to illustrate the robustness of this model in the simulation process, this paper assumes that the actual length of the flexible link is 0.85 m. Under the actual length, the transfer function obtained according to Eq. (21) is called the actual transfer function, and its specific expression is shown in Eq. (45).

$$G_{{p_{1} }} \left( s \right) = \frac{{{ 0}{\text{.006266}}s^{4} + 5450s^{2} + 7.242 \times {10}^{6} }}{{2.506 \times {10}^{ - 4} {\text{s}}^{5} { + 207}{\text{.9}}s^{3} + 1.835 \times {10}^{6} s}}$$
(45)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, D., Li, X., Yin, M. et al. Transmission characteristics analysis and disturbance compensation control strategy for two-inertia system with a flexible link. J Braz. Soc. Mech. Sci. Eng. 45, 270 (2023). https://doi.org/10.1007/s40430-023-04169-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04169-y

Keywords

Navigation