Skip to main content
Log in

Flutter characteristics of a rectangular sandwich plate with laminated three-phase polymer/GNP/fiber face sheets and an auxetic honeycomb core in yawed supersonic fluid flow

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In the presented work, the flutter (aeroelastic stability) behavior of a sandwich plate under yawed supersonic fluid flow is investigated. The plate consists of an auxetic re-entrant honeycomb core and two laminated polymer-based composite face sheets reinforced with graphene nanoplatelets (GNPs) and fibers. The sinusoidal shear deformation theory (SSDT) and linear piston theory are utilized to model the plate and aerodynamic pressure, respectively. The governing equations and associated boundary conditions are derived utilizing Hamilton’s principle, and a numerical solution is performed via the differential quadrature method (DQM). The critical aerodynamic pressure is determined, and the effects of various parameters on the aeroelastic stability characteristics are examined such as the geometric parameters of the auxetic honeycomb core, mass fractions of the GNPs and the fibers, the thickness of the plate, and yaw angle. Numerical results reveal that by considering a specified total thickness for the plate, the critical aerodynamic pressure decreases by increasing the thickness of the auxetic honeycomb core. It is observed that the geometrical characteristics of the cells in the auxetic honeycomb core have no significant effect on the critical aerodynamic pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Benjeddou A, Guerich M (2019) Free vibration of actual aircraft and spacecraft hexagonal honeycomb sandwich panels: a practical detailed FE approach. Adv Aircr Spacecr Sci 6(2):169–187

    Google Scholar 

  2. Galehdari SA, Kadkhodayan M (2019) Collapse of honeycomb cell as a result of buckling or plastic hinges, analytical, numerical and experimental study. J Braz Soc Mech Sci Eng 41(3):1–9

    Google Scholar 

  3. Torabi K, Afshari H, Hajiaboutalebi F (2019) Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates. J Sandw Struct Mater 21(8):2887–2920

    Google Scholar 

  4. Xie S, Feng Z, Zhou H, Wang D, Ma W (2020) In-plane and out-of-plane compressive mechanical properties of Nomex honeycombs and their prediction. J Braz Soc Mech Sci Eng 42(9):1–20

    Google Scholar 

  5. Ciepielewski R, Gieleta R, Miedzińska D (2022) Experimental study on static and dynamic response of aluminum honeycomb sandwich structures. Materials 15(5):1793

    Google Scholar 

  6. Maneengam A, Siddique MJ, Selvaraj R, Kakaravada I, Arumugam AB, Singh LK et al (2022) Influence of multi-walled carbon nanotubes reinforced honeycomb core on vibration and damping responses of carbon fiber composite sandwich shell structures. Polym Compos 43(4):2073–2088

    Google Scholar 

  7. Wan H, Ohtaki H, Kotosaka S, Hu G (2004) A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model. Eur J Mech A Solids 23(1):95–106

    MATH  Google Scholar 

  8. Lu Z-X, Li X, Yang Z-Y, Xie F (2016) Novel structure with negative Poisson’s ratio and enhanced Young’s modulus. Compos Struct 138:243–252

    Google Scholar 

  9. Qing TD, Zhi CY (2010) Wave propagation in sandwich panel with auxetic core. J Solid Mech 2(4):393–402

    Google Scholar 

  10. Duc ND, Seung-Eock K, Cong PH, Anh NT, Khoa ND (2017) Dynamic response and vibration of composite double curved shallow shells with negative Poisson’s ratio in auxetic honeycombs core layer on elastic foundations subjected to blast and damping loads. Int J Mech Sci 133:504–512

    Google Scholar 

  11. Cong PH, Long PT, Van Nhat N, Duc ND (2019) Geometrically nonlinear dynamic response of eccentrically stiffened circular cylindrical shells with negative poisson’s ratio in auxetic honeycombs core layer. Int J Mech Sci 152:443–453

    Google Scholar 

  12. Eipakchi H, Nasrekani FM (2020) Vibrational behavior of composite cylindrical shells with auxetic honeycombs core layer subjected to a moving pressure. Compos Struct 254:112847

    Google Scholar 

  13. Xiao P, Yifeng Z, Jie S, Zheng S (2021) Global buckling analysis of composite honeycomb sandwich plate with negative Poisson’s ratio (CHSP-NPR) using variational asymptotic equivalent model. Compos Struct 264:113721

    Google Scholar 

  14. Xu F, Yu K, Hua L (2021) In-plane dynamic response and multi-objective optimization of negative Poisson’s ratio (NPR) honeycomb structures with sinusoidal curve. Compos Struct 269:114018

    Google Scholar 

  15. Van Quyen N, Van Thanh N, Quan TQ, Duc ND (2021) Nonlinear forced vibration of sandwich cylindrical panel with negative Poisson’s ratio auxetic honeycombs core and CNTRC face sheets. Thin Walled Struct 162:107571

    Google Scholar 

  16. Nguyen NV, Nguyen-Xuan H, Nguyen TN, Kang J, Lee J (2021) A comprehensive analysis of auxetic honeycomb sandwich plates with graphene nanoplatelets reinforcement. Compos Struct 259:113213

    Google Scholar 

  17. Wang Y, He Q, Chen Y, Gu H, Zhou H (2021) In-plane dynamic crushing of a novel bio-inspired re-entrant honeycomb with negative Poisson’s ratio. J Braz Soc Mech Sci Eng 43(10):1–18

    Google Scholar 

  18. Song M, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588

    Google Scholar 

  19. Damercheloo AR, Khorshidvand AR, Khorsandijou SM, Jabbari M (2022) A study on dynamic analysis of rotating GNP-reinforced joined conical–conical shells. J Braz Soc Mech Sci Eng 44(6):1–27

    Google Scholar 

  20. Singhal M, Jain A, Thomas B, Swain A (2022) Investigation of graphene nanoplatelets-deposited textured metal matrix composite plates for improved mechanical properties: a numerical approach. J Braz Soc Mech Sci Eng 44(5):1–26

    Google Scholar 

  21. Afshari H, Amirabadi H (2021) Vibration characteristics of rotating truncated conical shells reinforced with agglomerated carbon nanotubes. J Vib Control 28(15–16):1894–1914

    MathSciNet  Google Scholar 

  22. Ghorbanpour Arani A, Kiani F, Afshari H (2021) Free and forced vibration analysis of laminated functionally graded CNT-reinforced composite cylindrical panels. J Sandw Struct Mater 23(1):255–278

    Google Scholar 

  23. Kiani F, Ariaseresht Y, Niroumand A, Afshari H (2022) Thermo-mechanical buckling analysis of thick beams reinforced with agglomerated CNTs with temperature-dependent thermo-mechanical properties under a nonuniform thermal loading. Mech Based Des Struct Mach 2022:1–21

    Google Scholar 

  24. Afshari H, Ariaseresht Y, Rahimian Koloor SS, Amirabadi H, Bidgoli MO (2022) Supersonic flutter behavior of a polymeric truncated conical shell reinforced with agglomerated CNTs. Waves Random Complex Media 2022:1–25

    Google Scholar 

  25. Esawi AM, Farag MM (2007) Carbon nanotube reinforced composites: potential and current challenges. Mater Des 28(9):2394–2401

    Google Scholar 

  26. Seidi J, Kamarian S (2017) Free vibrations of non-uniform CNT/fiber/polymer nanocomposite beams. Curved Layer Struct 4(1):21–30

    Google Scholar 

  27. Rafiee M, Nitzsche F, Labrosse M (2018) Modeling and mechanical analysis of multiscale fiber-reinforced graphene composites: Nonlinear bending, thermal post-buckling and large amplitude vibration. Int J Non-Linear Mech 103:104–112

    Google Scholar 

  28. Swain A, Roy T (2018) Viscoelastic modelling and dynamic characteristics of CNTs-CFRP-2DWF composite shell structures. Compos B Eng 141:100–122

    Google Scholar 

  29. Tornabene F, Bacciocchi M, Fantuzzi N, Reddy J (2019) Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures. Polym Compos 40(S1):102–126

    Google Scholar 

  30. Karimiasl M, Ebrahimi F, Mahesh V (2020) On nonlinear vibration of sandwiched polymer-CNT/GPL-fiber nanocomposite nanoshells. Thin-Walled Struct 146:106431

    Google Scholar 

  31. Yousefi AH, Memarzadeh P, Afshari H, Hosseini SJ (2020) Agglomeration effects on free vibration characteristics of three-phase CNT/polymer/fiber laminated truncated conical shells. Thin-Walled Struct 157:107077

    Google Scholar 

  32. Yousefi AH, Memarzadeh P, Afshari H, Hosseini SJ (2021) Dynamic characteristics of truncated conical panels made of FRPs reinforced with agglomerated CNTs. Structures 2021:4701–4717

    Google Scholar 

  33. Yousefi AH, Memarzadeh P, Afshari H, Hosseini SJ (2021) Optimization of CNT/polymer/fiber laminated truncated conical panels for maximum fundamental frequency and minimum cost. Mech Based Des Struct Mach 2021:1–23

    Google Scholar 

  34. Noroozi M, Zajkani A, Ghadiri M (2021) Dynamic plastic impact behavior of CNTs/fiber/polymer multiscale laminated composite doubly curved shells. Int J Mech Sci 195:106223

    Google Scholar 

  35. Jeawon Y, Drosopoulos G, Foutsitzi G, Stavroulakis G, Adali S (2021) Optimization and analysis of frequencies of multi-scale graphene/fibre reinforced nanocomposite laminates with non-uniform distributions of reinforcements. Eng Struct 228:111525

    Google Scholar 

  36. Zhu X, Zhang J, Zhang W, Chen J (2019) Vibration frequencies and energies of an auxetic honeycomb sandwich plate. Mech Adv Mater Struct 26(23):1951–1957

    Google Scholar 

  37. Nasution MK, Syah R, Ramdan D, Afshari H, Amirabadi H, Selim MM et al (2022) Modeling and computational simulation for supersonic flutter prediction of polymer/GNP/fiber laminated composite joined conical-conical shells. Arab J Chem 15(1):103460

    Google Scholar 

  38. Affdl JH, Kardos J (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352

    Google Scholar 

  39. Ventsel E, Krauthammer T, Carrera E (2002) Thin plates and shells: theory, analysis, and applications. CRC Press

    Google Scholar 

  40. Reissner E (1945) The effect of transverse shear deformation on the bending of elastic plates. J Appl Mech 12(2):69–77

    MathSciNet  MATH  Google Scholar 

  41. Mindlin R (1951) Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J Appl Mech 18(1):31–38

    MATH  Google Scholar 

  42. Reddy JN (1984) A simple higher-order theory for laminated composite plates. J Appl Mech 51(4):745–752

    MATH  Google Scholar 

  43. Zenkour A (2005) A comprehensive analysis of functionally graded sandwich plates: part 1—deflection and stresses. Int J Solids Struct 42(18–19):5224–5242

    MATH  Google Scholar 

  44. Reddy JN (2003) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press

    Google Scholar 

  45. Reddy JN (2017) Energy principles and variational methods in applied mechanics. Wiley

    Google Scholar 

  46. Hosseini M, Ghorbanpour Arani A, Karamizadeh MR, Afshari H, Niknejad S (2019) Aeroelastic analysis of cantilever non-symmetric FG sandwich plates under yawed supersonic flow. Wind Struct 29(6):457–469

    Google Scholar 

  47. Grover N, Singh B, Maiti D (2016) An inverse trigonometric shear deformation theory for supersonic flutter characteristics of multilayered composite plates. Aerosp Sci Technol 52:41–51

    Google Scholar 

  48. Amirabadi H, Afshari H, Afjaei MA, Sarafraz M (2022) Effect of variable thickness on the aeroelastic stability boundaries of truncated conical shells. Waves Random Complex Media 2022:1–24

    Google Scholar 

  49. Ghorbanpour Arani A, Kiani F, Afshari H (2019) Aeroelastic analysis of laminated FG-CNTRC cylindrical panels under yawed supersonic flow. Int J Appl Mech 11(06):1950052

    Google Scholar 

  50. Torabi K, Afshari H (2017) Optimization for flutter boundaries of cantilevered trapezoidal thick plates. J Braz Soc Mech Sci Eng 39(5):1545–1561

    Google Scholar 

  51. Bellman R, Casti J (1971) Differential quadrature and long-term integration. J Math Anal Appl 34(2):235–238

    MathSciNet  MATH  Google Scholar 

  52. Torabi K, Afshari H (2017) Vibration analysis of a cantilevered trapezoidal moderately thick plate with variable thickness. Eng Solid Mech 5(1):71–92

    Google Scholar 

  53. Bert CW, Malik M (1996) Differential quadrature method in computational mechanics: a review. Appl Mech Rev 49(1):1–28

    Google Scholar 

  54. Afshari H (2022) Free vibration analysis of GNP-reinforced truncated conical shells with different boundary conditions. Aust J Mech Eng 20(5):1363–1378

    Google Scholar 

  55. Afshari H (2020) Effect of graphene nanoplatelet reinforcements on the dynamics of rotating truncated conical shells. J Braz Soc Mech Sci Eng 42(10):1–22

    Google Scholar 

  56. Yasmin A, Daniel IM (2004) Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 45(24):8211–8219

    Google Scholar 

  57. Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76(6):064120

    Google Scholar 

  58. Rafiee MA, Rafiee J, Wang Z, Song H, Yu Z-Z, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890

    Google Scholar 

  59. Gibbs SC, Sethna A, Wang I, Tang D, Dowell E (2014) Aeroelastic stability of a cantilevered plate in yawed subsonic flow. J Fluids Struct 49:450–462

    Google Scholar 

  60. Afshari H, Adab N (2022) Size-dependent buckling and vibration analyses of GNP reinforced microplates based on the quasi-3D sinusoidal shear deformation theory. Mech Based Des Struct Mach 50(1):184–205

    Google Scholar 

  61. Tran TT, Pham QH, Nguyen-Thoi T (2020) Dynamic analysis of sandwich auxetic honeycomb plates subjected to moving oscillator load on elastic foundation. Adv Mater Sci Eng 2020:1–16

    Google Scholar 

  62. Pham QH, Tran VK, Tran TT (2022) Vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers under blast load. Def Technol

  63. Valizadeh N, Natarajan S, Gonzalez-Estrada OA, Rabczuk T, Bui TQ, Bordas SP (2013) NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter. Compos Struct 99:309–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Seidi.

Additional information

Technical Editor: Aurelio Araujo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In Eq. (51), \(\left\{ s \right\}\), [K], and [M] are defined as follows:

$$ \begin{array}{*{20}c} {\left\{ s \right\}_{{5N_{x} N_{y} \times 1}} = \left\{ {\begin{array}{*{20}c} {\left\{ {U^{*} } \right\}} \\ {\left\{ {V^{*} } \right\}} \\ {\left\{ {W^{*} } \right\}} \\ {\left\{ {X^{*} } \right\}} \\ {\left\{ {Y^{*} } \right\}} \\ \end{array} } \right\},} & {\left[ K \right] = \left[ {\begin{array}{*{20}c} {k_{11} } & {k_{12} } & {k_{13} } & {k_{14} } & {k_{15} } \\ {k_{21} } & {k_{22} } & {k_{23} } & {k_{24} } & {k_{25} } \\ {k_{31} } & {k_{32} } & {k_{33} } & {k_{34} } & {k_{35} } \\ {k_{41} } & {k_{42} } & {k_{43} } & {k_{44} } & {k_{45} } \\ {k_{51} } & {k_{52} } & {k_{53} } & {k_{54} } & {k_{55} } \\ \end{array} } \right],} & {\left[ M \right] = \left[ {\begin{array}{*{20}c} {m_{11} } & {\left[ 0 \right]} & {\left[ 0 \right]} & {\left[ 0 \right]} & {\left[ 0 \right]} \\ {\left[ 0 \right]} & {m_{22} } & {\left[ 0 \right]} & {\left[ 0 \right]} & {\left[ 0 \right]} \\ {\left[ 0 \right]} & {\left[ 0 \right]} & {m_{33} } & {m_{34} } & {m_{35} } \\ {\left[ 0 \right]} & {\left[ 0 \right]} & {m_{43} } & {m_{44} } & {\left[ 0 \right]} \\ {\left[ 0 \right]} & {\left[ 0 \right]} & {m_{53} } & {\left[ 0 \right]} & {m_{55} } \\ \end{array} } \right],} \\ \end{array} $$
(A1)

where [0] is the zero matrix of order NxNy and kij = kji, mij = mji are presented as follows:

$$ \begin{gathered} k_{11} = A_{11} \left( {I^{y} \otimes B^{x} } \right) + 2A_{16} \left( {A^{y} \otimes A^{x} } \right) + A_{66} \left( {B^{y} \otimes I^{x} } \right), \hfill \\ k_{12} = A_{16} \left( {I^{y} \otimes B^{x} } \right) + \left( {A_{12} + A_{66} } \right)\left( {A^{y} \otimes A^{x} } \right) + A_{26} \left( {B^{y} \otimes I^{x} } \right), \hfill \\ k_{13} = B_{11} \left( {I^{y} \otimes C^{x} } \right) + 3B_{16} \left( {A^{y} \otimes B^{x} } \right) + \left( {B_{12} + 2B_{66} } \right)\left( {B^{y} \otimes A^{x} } \right) + B_{26} \left( {C^{y} \otimes I^{x} } \right), \hfill \\ k_{14} = C_{11} \left( {I^{y} \otimes B^{x} } \right) + 2C_{16} \left( {A^{y} \otimes A^{x} } \right) + C_{66} \left( {B^{y} \otimes I^{x} } \right), \hfill \\ k_{15} = C_{16} \left( {I^{y} \otimes B^{x} } \right) + \left( {C_{12} + C_{66} } \right)\left( {A^{y} \otimes A^{x} } \right) + C_{26} \left( {B^{y} \otimes I^{x} } \right), \hfill \\ m_{11} = I_{0} \left( {I^{y} \otimes I^{x} } \right), \hfill \\ k_{22} = A_{66} \left( {I^{y} \otimes B^{x} } \right) + 2A_{26} \left( {A^{y} \otimes A^{x} } \right) + A_{22} \left( {B^{y} \otimes I^{x} } \right), \hfill \\ k_{23} = B_{16} \left( {I^{y} \otimes C^{x} } \right) + \left( {B_{12} + 2B_{66} } \right)\left( {A^{y} \otimes B^{x} } \right) + 3B_{26} \left( {B^{y} \otimes A^{x} } \right) + B_{22} \left( {C^{y} \otimes I^{x} } \right), \hfill \\ k_{24} = C_{16} \left( {I^{y} \otimes B^{x} } \right) + \left( {C_{12} + C_{66} } \right)\left( {A^{y} \otimes A^{x} } \right) + C_{26} \left( {B^{y} \otimes I^{x} } \right), \hfill \\ k_{25} = C_{66} \left( {I^{y} \otimes B^{x} } \right) + 2C_{26} \left( {A^{y} \otimes A^{x} } \right) + C_{22} \left( {B^{y} \otimes I^{x} } \right), \hfill \\ m_{22} = I_{0} \left( {I^{y} \otimes I^{x} } \right), \hfill \\ k_{33} = D_{11} \left( {I^{y} \otimes D^{x} } \right) + 4D_{16} \left( {A^{y} \otimes C^{x} } \right) + 2\left( {D_{12} + 2D_{66} } \right)\left( {B^{y} \otimes B^{x} } \right) \hfill \\ \quad \quad - R_{55} \left( {I^{y} \otimes B^{x} } \right) + 4D_{26} \left( {C^{y} \otimes A^{x} } \right) - 2R_{45} \left( {A^{y} \otimes A^{x} } \right) + \xi \cos \theta_{\infty } \left( {I^{y} \otimes A^{x} } \right) \hfill \\ \quad \quad + D_{22} \left( {D^{y} \otimes I^{x} } \right) - R_{44} \left( {B^{y} \otimes I^{x} } \right) + \xi \sin \theta_{\infty } \left( {A^{y} \otimes I^{x} } \right), \hfill \\ k_{34} = F_{11} \left( {I^{y} \otimes C^{x} } \right) + 3F_{16} \left( {A^{y} \otimes B^{x} } \right) + \left( {F_{12} + 2F_{66} } \right)\left( {B^{y} \otimes A^{x} } \right) - R_{55} \left( {I^{y} \otimes A^{x} } \right) \hfill \\ \quad \quad + F_{26} \left( {C^{y} \otimes I^{x} } \right) - R_{45} \left( {A^{y} \otimes I^{x} } \right), \hfill \\ k_{35} = F_{16} \left( {I^{y} \otimes C^{x} } \right) + \left( {F_{12} + 2F_{66} } \right)\left( {A^{y} \otimes B^{x} } \right) + 3F_{26} \left( {B^{y} \otimes A^{x} } \right) - R_{45} \left( {I^{y} \otimes A^{x} } \right) \hfill \\ \quad \quad + F_{22} \left( {C^{y} \otimes I^{x} } \right) - R_{44} \left( {A^{y} \otimes I^{x} } \right), \hfill \\ m_{33} = I_{2} \left( {I^{y} \otimes B^{x} } \right) + I_{2} \left( {B^{y} \otimes I^{x} } \right) - I_{0} \left( {I^{y} \otimes I^{x} } \right), \hfill \\ m_{34} = I_{4} \left( {I^{y} \otimes A^{x} } \right), \hfill \\ m_{35} = I_{4} \left( {A^{y} \otimes I^{x} } \right), \hfill \\ k_{44} = H_{11} \left( {I^{y} \otimes B^{x} } \right) + 2H_{16} \left( {A^{y} \otimes A^{x} } \right) + H_{66} \left( {B^{y} \otimes I^{x} } \right) - R_{55} \left( {I^{y} \otimes I^{x} } \right), \hfill \\ k_{45} = H_{16} \left( {I^{y} \otimes B^{x} } \right) + \left( {H_{12} + H_{66} } \right)\left( {A^{y} \otimes A^{x} } \right) + H_{26} \left( {B^{y} \otimes I^{x} } \right) - R_{45} \left( {I^{y} \otimes I^{x} } \right), \hfill \\ m_{44} = I_{5} \left( {I^{y} \otimes I^{x} } \right), \hfill \\ k_{55} = H_{66} \left( {I^{y} \otimes B^{x} } \right) + 2H_{26} \left( {A^{y} \otimes A^{x} } \right) + H_{22} \left( {B^{y} \otimes I^{x} } \right) - R_{44} \left( {I^{y} \otimes I^{x} } \right), \hfill \\ m_{55} = I_{5} \left( {I^{y} \otimes I^{x} } \right), \hfill \\ \end{gathered} $$
(A2)

where Ix and Iy sequentially stand for the identity matrices of orders Nx and Ny.

Appendix B

In Eq. (52), [L] is presented as

$$ \left[ L \right] = \left[ {\begin{array}{*{20}c} {L_{11} } & {L_{12} } & {L_{13} } & {L_{14} } & {L_{15} } \\ {L_{21} } & {L_{22} } & {L_{23} } & {L_{24} } & {L_{25} } \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ {L_{241} } & {L_{242} } & {L_{243} } & {L_{244} } & {L_{245} } \\ \end{array} } \right], $$
(B1)

in which, with the following definitions, L11-L65 are related to the boundary conditions at x = 0:

$$ \begin{gathered} {\text{Clamped}}\,\left( {\text{C}} \right){:} \hfill \\ \begin{array}{*{20}c} {L_{11} = L_{22} = L_{33} = L_{54} = L_{65} = I^{y} \otimes I_{1}^{x} ,} & {L_{43} = I^{y} \otimes A_{1}^{x} ,} \\ \end{array} \hfill \\ L_{12} = L_{13} = L_{14} = L_{15} = L_{21} = L_{23} = L_{24} = L_{25} = L_{31} = L_{32} = L_{34} = L_{35} = L_{41} = \hfill \\ L_{42} = L_{44} = L_{45} = L_{51} = L_{52} = L_{53} = L_{55} = L_{61} = L_{62} = L_{63} = L_{64} = \left\{ 0 \right\}_{{N_{y} \times N_{x} N_{y} }} , \hfill \\ {\text{Simply supported }}\left( {\text{S}} \right){:} \hfill \\ L_{22} = L_{33} = L_{65} = I^{y} \otimes I_{1}^{x} , \hfill \\ L_{21} = L_{23} = L_{24} = L_{25} = L_{31} = L_{32} = L_{34} = L_{35} = L_{61} = L_{62} = L_{63} = L_{64} = \left\{ 0 \right\}_{{N_{y} \times N_{x} N_{y} }} , \hfill \\ \begin{array}{*{20}c} {L_{11} = A_{11} \left( {I^{y} \otimes A_{1}^{x} } \right) + A_{16} \left( {A^{y} \otimes I_{1}^{x} } \right),} & {L_{12} = A_{16} \left( {I^{y} \otimes A_{1}^{x} } \right),} & {L_{13} = B_{11} \left( {I^{y} \otimes B_{1}^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{14} = C_{11} \left( {I^{y} \otimes A_{1}^{x} } \right) + C_{16} \left( {A^{y} \otimes I_{1}^{x} } \right),} & {L_{15} = C_{16} \left( {I^{y} \otimes A_{1}^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{41} = B_{11} \left( {I^{y} \otimes A_{1}^{x} } \right) + B_{16} \left( {A^{y} \otimes I_{1}^{x} } \right),} & {L_{42} = B_{16} \left( {I^{y} \otimes A_{1}^{x} } \right),} & {L_{43} = D_{11} \left( {I^{y} \otimes B_{1}^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{44} = F_{11} \left( {I^{y} \otimes A_{1}^{x} } \right) + F_{16} \left( {A^{y} \otimes I_{1}^{x} } \right),} & {L_{45} = F_{16} \left( {I^{y} \otimes A_{1}^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{51} = C_{11} \left( {I^{y} \otimes A_{1}^{x} } \right) + C_{16} \left( {A^{y} \otimes I_{1}^{x} } \right),} & {L_{52} = C_{16} \left( {I^{y} \otimes A_{1}^{x} } \right),} & {L_{53} = F_{11} \left( {I^{y} \otimes B_{1}^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{54} = H_{11} \left( {I^{y} \otimes A_{1}^{x} } \right) + H_{16} \left( {A^{y} \otimes I_{1}^{x} } \right),} & {L_{55} = H_{16} \left( {I^{y} \otimes A_{1}^{x} } \right),} \\ \end{array} \hfill \\ \end{gathered} $$
(B2)

L71-L125 are related to the boundary conditions at y = 0:

$$ \begin{gathered} {\text{Clamped}}\,\left( {\text{C}} \right){:} \hfill \\ \begin{array}{*{20}c} {L_{71} = L_{82} = L_{93} = L_{114} = L_{125} = I_{1}^{y} \otimes I^{x} ,} & {L_{103} = A_{1}^{y} \otimes I^{x} ,} \\ \end{array} \hfill \\ L_{72} = L_{73} = L_{74} = L_{75} = L_{81} = L_{83} = L_{84} = L_{85} = L_{91} = L_{92} = L_{94} = L_{95} = L_{101} = \hfill \\ L_{102} = L_{104} = L_{105} = L_{111} = L_{112} = L_{113} = L_{115} = L_{121} = L_{122} = L_{123} = L_{124} = \left\{ 0 \right\}_{{N_{x} \times N_{x} N_{y} }} , \hfill \\ {\text{Simply supported }}\left( {\text{S}} \right){:} \hfill \\ L_{71} = L_{93} = L_{114} = I_{1}^{y} \otimes I^{x} , \hfill \\ L_{72} = L_{73} = L_{74} = L_{75} = L_{91} = L_{92} = L_{94} = L_{95} = L_{111} = L_{112} = L_{113} = L_{115} = \left\{ 0 \right\}_{{N_{x} \times N_{x} N_{y} }} , \hfill \\ \begin{array}{*{20}c} {L_{81} = A_{26} \left( {A_{1}^{y} \otimes I^{x} } \right),} & {L_{82} = A_{26} \left( {I_{1}^{y} \otimes A^{x} } \right) + A_{22} \left( {A_{1}^{y} \otimes I^{x} } \right),} & {L_{83} = B_{22} \left( {B_{1}^{y} \otimes I^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{84} = C_{26} \left( {A_{1}^{y} \otimes I^{x} } \right),} & {L_{85} = C_{26} \left( {I_{1}^{y} \otimes A^{x} } \right) + C_{22} \left( {A_{1}^{y} \otimes I^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{101} = B_{26} \left( {A_{1}^{y} \otimes I^{x} } \right),} & {L_{102} = B_{26} \left( {I_{1}^{y} \otimes A^{x} } \right) + B_{22} \left( {A_{1}^{y} \otimes I^{x} } \right),} & {L_{103} = D_{22} \left( {B_{1}^{y} \otimes I^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{104} = F_{26} \left( {A_{1}^{y} \otimes I^{x} } \right),} & {L_{105} = F_{26} \left( {I_{1}^{y} \otimes A^{x} } \right) + F_{22} \left( {A_{1}^{y} \otimes I^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{121} = C_{26} \left( {A_{1}^{y} \otimes I^{x} } \right),} & {L_{122} = C_{26} \left( {I_{1}^{y} \otimes A^{x} } \right) + C_{22} \left( {A_{1}^{y} \otimes I^{x} } \right),} & {L_{123} = F_{22} \left( {B_{1}^{y} \otimes I^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{124} = H_{26} \left( {A_{1}^{y} \otimes I^{x} } \right),} & {L_{125} = H_{26} \left( {I_{1}^{y} \otimes A^{x} } \right) + H_{22} \left( {A_{1}^{y} \otimes I^{x} } \right),} \\ \end{array} \hfill \\ \end{gathered} $$
(B3)

L131-L185are related to the boundary conditions at x = a:

$$ \begin{gathered} {\text{Clamped}}\,\left( {\text{C}} \right){:} \hfill \\ \begin{array}{*{20}c} {L_{131} = L_{142} = L_{153} = L_{174} = L_{185} = I^{y} \otimes I_{{{\text{end}}}}^{x} ,} & {L_{163} = I^{y} \otimes A_{{{\text{end}}}}^{x} ,} \\ \end{array} \hfill \\ L_{132} = L_{133} = L_{134} = L_{135} = L_{141} = L_{143} = L_{144} = L_{145} = L_{151} = L_{152} = L_{154} = L_{155} = L_{161} = \hfill \\ L_{162} = L_{164} = L_{165} = L_{171} = L_{172} = L_{173} = L_{175} = L_{181} = L_{182} = L_{183} = L_{184} = \left\{ 0 \right\}_{{N_{y} \times N_{x} N_{y} }} , \hfill \\ {\text{Simply supported }}\left( {\text{S}} \right){:} \hfill \\ L_{142} = L_{153} = L_{185} = I^{y} \otimes I_{{{\text{end}}}}^{x} , \hfill \\ L_{141} = L_{143} = L_{144} = L_{145} = L_{151} = L_{152} = L_{154} = L_{155} = L_{181} = L_{182} = L_{183} = L_{184} = \left\{ 0 \right\}_{{N_{y} \times N_{x} N_{y} }} , \hfill \\ \begin{array}{*{20}c} {L_{131} = A_{11} \left( {I^{y} \otimes A_{{{\text{end}}}}^{x} } \right) + A_{16} \left( {A^{y} \otimes I_{{{\text{end}}}}^{x} } \right),} & {L_{132} = A_{16} \left( {I^{y} \otimes A_{{{\text{end}}}}^{x} } \right),} & {L_{133} = B_{11} \left( {I^{y} \otimes B_{{{\text{end}}}}^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{134} = C_{11} \left( {I^{y} \otimes A_{{{\text{end}}}}^{x} } \right) + C_{16} \left( {A^{y} \otimes I_{{{\text{end}}}}^{x} } \right),} & {L_{135} = C_{16} \left( {I^{y} \otimes A_{{{\text{end}}}}^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{161} = B_{11} \left( {I^{y} \otimes A_{{{\text{end}}}}^{x} } \right) + B_{16} \left( {A^{y} \otimes I_{{{\text{end}}}}^{x} } \right),} & {L_{162} = B_{16} \left( {I^{y} \otimes A_{{{\text{end}}}}^{x} } \right),} & {L_{163} = D_{11} \left( {I^{y} \otimes B_{{{\text{end}}}}^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{164} = F_{11} \left( {I^{y} \otimes A_{{{\text{end}}}}^{x} } \right) + F_{16} \left( {A^{y} \otimes I_{{{\text{end}}}}^{x} } \right),} & {L_{165} = F_{16} \left( {I^{y} \otimes A_{{{\text{end}}}}^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{171} = C_{11} \left( {I^{y} \otimes A_{{{\text{end}}}}^{x} } \right) + C_{16} \left( {A^{y} \otimes I_{{{\text{end}}}}^{x} } \right),} & {L_{172} = C_{16} \left( {I^{y} \otimes A_{{{\text{end}}}}^{x} } \right),} & {L_{173} = F_{11} \left( {I^{y} \otimes B_{{{\text{end}}}}^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{174} = H_{11} \left( {I^{y} \otimes A_{{{\text{end}}}}^{x} } \right) + H_{16} \left( {A^{y} \otimes I_{{{\text{end}}}}^{x} } \right),} & {L_{175} = H_{16} \left( {I^{y} \otimes A_{{{\text{end}}}}^{x} } \right),} \\ \end{array} \hfill \\ \end{gathered} $$
(B4)

and L191-L245 are related to the boundary conditions at y = b:

$$ \begin{gathered} {\text{Clamped}}\,\left( {\text{C}} \right){:} \hfill \\ \begin{array}{*{20}c} {L_{191} = L_{202} = L_{213} = L_{234} = L_{245} = I_{end}^{y} \otimes I^{x} ,} & {L_{223} = A_{end}^{y} \otimes I^{x} ,} \\ \end{array} \hfill \\ L_{192} = L_{193} = L_{194} = L_{195} = L_{201} = L_{203} = L_{204} = L_{205} = L_{211} = L_{212} = L_{214} = L_{215} = L_{221} = \hfill \\ L_{222} = L_{224} = L_{225} = L_{231} = L_{232} = L_{233} = L_{235} = L_{241} = L_{242} = L_{243} = L_{244} = \left\{ 0 \right\}_{{N_{x} \times N_{x} N_{y} }} , \hfill \\ {\text{Simply supported }}\left( {\text{S}} \right){:} \hfill \\ L_{191} = L_{213} = L_{234} = I_{{{\text{end}}}}^{y} \otimes I^{x} , \hfill \\ L_{192} = L_{193} = L_{194} = L_{195} = L_{211} = L_{212} = L_{214} = L_{215} = L_{231} = L_{232} = L_{233} = L_{235} = \left\{ 0 \right\}_{{N_{x} \times N_{x} N_{y} }} , \hfill \\ \begin{array}{*{20}c} {L_{201} = A_{26} \left( {A_{{{\text{end}}}}^{y} \otimes I^{x} } \right),} & {L_{202} = A_{26} \left( {I_{end}^{y} \otimes A^{x} } \right) + A_{22} \left( {A_{{{\text{end}}}}^{y} \otimes I^{x} } \right),} & {L_{203} = B_{22} \left( {B_{{{\text{end}}}}^{y} \otimes I^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{204} = C_{26} \left( {A_{{{\text{end}}}}^{y} \otimes I^{x} } \right),} & {L_{205} = C_{26} \left( {I_{end}^{y} \otimes A^{x} } \right) + C_{22} \left( {A_{{{\text{end}}}}^{y} \otimes I^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{221} = B_{26} \left( {A_{{{\text{end}}}}^{y} \otimes I^{x} } \right),} & {L_{222} = B_{26} \left( {I_{end}^{y} \otimes A^{x} } \right) + B_{22} \left( {A_{{{\text{end}}}}^{y} \otimes I^{x} } \right),} & {L_{223} = D_{22} \left( {B_{{{\text{end}}}}^{y} \otimes I^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{224} = F_{26} \left( {A_{{{\text{end}}}}^{y} \otimes I^{x} } \right),} & {L_{225} = F_{26} \left( {I_{end}^{y} \otimes A^{x} } \right) + F_{22} \left( {A_{{{\text{end}}}}^{y} \otimes I^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{241} = C_{26} \left( {A_{{{\text{end}}}}^{y} \otimes I^{x} } \right),} & {L_{242} = C_{26} \left( {I_{end}^{y} \otimes A^{x} } \right) + C_{22} \left( {A_{{{\text{end}}}}^{y} \otimes I^{x} } \right),} & {L_{243} = F_{22} \left( {B_{{{\text{end}}}}^{y} \otimes I^{x} } \right),} \\ \end{array} \hfill \\ \begin{array}{*{20}c} {L_{244} = H_{26} \left( {A_{{{\text{end}}}}^{y} \otimes I^{x} } \right),} & {L_{245} = H_{26} \left( {I_{end}^{y} \otimes A^{x} } \right) + H_{22} \left( {A_{{{\text{end}}}}^{y} \otimes I^{x} } \right).} \\ \end{array} \hfill \\ \end{gathered} $$
(B5)

In Eqs. (B2)–(B5), the subscripts “1” and “end,” respectively, indicate the first and last row of matrices.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarafraz, M., Seidi, H., Kakavand, F. et al. Flutter characteristics of a rectangular sandwich plate with laminated three-phase polymer/GNP/fiber face sheets and an auxetic honeycomb core in yawed supersonic fluid flow. J Braz. Soc. Mech. Sci. Eng. 45, 197 (2023). https://doi.org/10.1007/s40430-023-04108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04108-x

Keywords

Navigation