Skip to main content
Log in

Cold metal transfer-based wire arc additive manufacturing

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Cold metal transfer-based additive manufacturing technique is a new promising approach based on wire-feed AM. It is gaining more popularity than its contemporary additive manufacturing processes for metal additive manufacturing due to its capability of economically producing large-size components with relatively high deposition rates and lower heat input. This article introduces cold metal transfer-based wire arc additive manufacturing (CMT-WAAM), starting with an overview of CMT-WAAM and the detailed mechanism of the cold metal transfer (CMT) process and its selection preference over the other variants of WAAM. A critical review of the microstructure and mechanical properties of various metals and alloys fabricated through CMT-WAAM technique has been reported. Research indicates an exciting result as the mechanical properties of CMT-WAAM-fabricated materials, such as titanium, steels, aluminum alloys, and nickel-based alloys, have been found relatively comparable to wrought materials and superior to as-cast materials. The advantages of CMT-WAAM have piqued the interest of many industrial experts and researchers for further developments in this technique; thus, the recent advances performed in this sector have been summarized in the last section of this manuscript. This article suggests that CMT-WAAM can be a viable alternative for high-quality manufacturing and offers a vision for the future of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Milewski JO (2017) Additive manufacturing of metals. Springer, Cham

    Book  Google Scholar 

  2. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/j.actamat.2016.07.019

    Article  Google Scholar 

  3. Huang SH, Liu P, Mokasdar A, Hou L (2013) Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 67:1191–1203. https://doi.org/10.1007/s00170-012-4558-5

    Article  Google Scholar 

  4. Sames WJ, List FA, Pannala S et al (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61:315–360. https://doi.org/10.1080/09506608.2015.1116649

    Article  Google Scholar 

  5. Khodabakhshi F, Farshidianfar MH, Gerlich AP et al (2020) Effects of laser additive manufacturing on microstructure and crystallographic texture of austenitic and martensitic stainless steels. Addit Manuf 31:100915. https://doi.org/10.1016/j.addma.2019.100915

    Article  Google Scholar 

  6. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, Boston

    Book  Google Scholar 

  7. ASTM F2792-12a (2012) Standard terminology for additive manufacturing technologies. ASTM International, West Conshohocken

    Google Scholar 

  8. Jackson MA, Van Asten A, Morrow JD et al (2016) A comparison of energy consumption in wire-based and powder-based additive-subtractive manufacturing. Procedia Manuf 5:989–1005. https://doi.org/10.1016/j.promfg.2016.08.087

    Article  Google Scholar 

  9. Karunakaran KP, Bernard A, Suryakumar S et al (2012) Rapid manufacturing of metallic objects. Rapid Prototyp J 18:264–280. https://doi.org/10.1108/13552541211231644

    Article  Google Scholar 

  10. Singh S, Sharma SK, Rathod DW (2021) A review on process planning strategies and challenges of WAAM. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.02.632

    Article  Google Scholar 

  11. Wu B, Pan Z, Ding D et al (2018) A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J Manuf Process 35:127–139. https://doi.org/10.1016/j.jmapro.2018.08.001

    Article  Google Scholar 

  12. Ralph B. Method of making decorative articles. United States, US1533300A. Filed Nov. 12, 1920, Granted April 14, 1925

  13. Cunningham CR, Flynn JM, Shokrani A et al (2018) Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit Manuf 22:672–686. https://doi.org/10.1016/j.addma.2018.06.020

    Article  Google Scholar 

  14. Pattanayak S, Sahoo SK (2021) Gas metal arc welding based additive manufacturing—a review. CIRP J Manuf Sci Technol 33:398–442. https://doi.org/10.1016/j.cirpj.2021.04.010

    Article  Google Scholar 

  15. Dickens P, Pridham M, Cobb R, Gibson I, Dixon G (1992) Rapid prototyping using 3-D welding. In: DTIC document

  16. Spencer JD, Dickens PM, Wykes CM (1998) Rapid prototyping of metal parts by three-dimensional welding. Proc Inst Mech Eng Part B J Eng Manuf 212:175–182. https://doi.org/10.1243/0954405981515590

    Article  Google Scholar 

  17. Tomar B, Shiva S, Nath T (2022) A review on wire arc additive manufacturing: processing parameters, defects, quality improvement and recent advances. Mater Today Commun 31:103739. https://doi.org/10.1016/j.mtcomm.2022.103739

    Article  Google Scholar 

  18. Pan Z, Ding D, Wu B et al (2018) Arc welding processes for additive manufacturing: a review. Trans Intell Weld Manuf. https://doi.org/10.1007/978-981-10-5355-9_1

    Article  Google Scholar 

  19. Ding D, Pan Z, Cuiuri D, Li H (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. Int J Adv Manuf Technol 81:465–481. https://doi.org/10.1007/s00170-015-7077-3

    Article  Google Scholar 

  20. Suryakumar S, Karunakaran KP, Bernard A et al (2011) Weld bead modeling and process optimization in hybrid layered manufacturing. Comput Des 43:331–344. https://doi.org/10.1016/j.cad.2011.01.006

    Article  Google Scholar 

  21. Kou S (2002) Welding metallurgy. Wiley, Hoboken

    Book  Google Scholar 

  22. Furukawa K (2006) New CMT arc welding process—welding of steel to aluminium dissimilar metals and welding of super-thin aluminium sheets. Weld Int 20:440–445. https://doi.org/10.1533/wint.2006.3598

    Article  Google Scholar 

  23. Bless SJ (1974) Drop transfer in short-circuit welding. J Phys D Appl Phys 7:306. https://doi.org/10.1088/0022-3727/7/4/306

    Article  Google Scholar 

  24. Pickin CG, Young K (2006) Evaluation of cold metal transfer (CMT) process for welding aluminium alloy. Sci Technol Weld Join 11:583–585. https://doi.org/10.1179/174329306X120886

    Article  Google Scholar 

  25. Feng J, Zhang H, He P (2009) The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding. Mater Des 30:1850–1852. https://doi.org/10.1016/j.matdes.2008.07.015

    Article  Google Scholar 

  26. Sun Z, Lv Y, Xu B et al (2015) Investigation of droplet transfer behaviours in cold metal transfer (CMT) process on welding Ti–6Al–4V alloy. Int J Adv Manuf Technol 80:2007–2014. https://doi.org/10.1007/s00170-015-7197-9

    Article  Google Scholar 

  27. Mezrag B, Deschaux-Beaume F, Benachour M (2015) Control of mass and heat transfer for steel/aluminium joining using cold metal transfer process. Sci Technol Weld Join 20:189–198. https://doi.org/10.1179/1362171814Y.0000000271

    Article  Google Scholar 

  28. Selvi S, Vishvaksenan A, Rajasekar E (2018) Cold metal transfer (CMT) technology—an overview. Def Technol 14:28–44. https://doi.org/10.1016/j.dt.2017.08.002

    Article  Google Scholar 

  29. Panchenko O, Kurushkin D, Mushnikov I et al (2020) A high-performance WAAM process for Al–Mg–Mn using controlled short-circuiting metal transfer at increased wire feed rate and increased travel speed. Mater Des 195:109040. https://doi.org/10.1016/j.matdes.2020.109040

    Article  Google Scholar 

  30. Wang P, Zhang H, Zhu H et al (2021) Wire-arc additive manufacturing of AZ31 magnesium alloy fabricated by cold metal transfer heat source: processing, microstructure, and mechanical behavior. J Mater Process Technol 288:116895. https://doi.org/10.1016/j.jmatprotec.2020.116895

    Article  Google Scholar 

  31. Pal K, Pal SK (2011) Effect of pulse parameters on weld quality in pulsed gas metal arc welding: a review. J Mater Eng Perform 20:918–931. https://doi.org/10.1007/s11665-010-9717-y

    Article  Google Scholar 

  32. Stinson H, Ward R, Quinn J, McGarrigle C (2021) Comparison of properties and bead geometry in MIG and CMT single layer samples for WAAM applications. Metals (Basel). https://doi.org/10.3390/met11101530

    Article  Google Scholar 

  33. Rams J (2022) Wrought aluminum alloys. In: Encyclopedia of materials: metals and alloys. Elsevier, pp 132–140. https://doi.org/10.1016/B978-0-12-819726-4.00083-1

    Chapter  Google Scholar 

  34. Campatelli G, Campanella D, Barcellona A et al (2020) Microstructural, mechanical and energy demand characterization of alternative WAAM techniques for Al-alloy parts production. CIRP J Manuf Sci Technol 31:492–499. https://doi.org/10.1016/j.cirpj.2020.08.001

    Article  Google Scholar 

  35. Li H, Liang X, Li F et al (2007) Effect of Y content on microstructure and mechanical properties of 2519 aluminum alloy. Trans Nonferrous Metals Soc China 17:1194–1198. https://doi.org/10.1016/S1003-6326(07)60248-9

    Article  Google Scholar 

  36. Su C, Chen X, Gao C, Wang Y (2019) Effect of heat input on microstructure and mechanical properties of Al–Mg alloys fabricated by WAAM. Appl Surf Sci 486:431–440. https://doi.org/10.1016/j.apsusc.2019.04.255

    Article  Google Scholar 

  37. (2014) I.O.f. standardization ISO 6361-2:2014 Wrought aluminium and aluminium alloys—sheets, strips and plates—part 2 mechanical properties

  38. Zhang C, Li Y, Gao M, Zeng X (2018) Wire arc additive manufacturing of Al–6Mg alloy using variable polarity cold metal transfer arc as power source. Mater Sci Eng A 711:415–423. https://doi.org/10.1016/j.msea.2017.11.084

    Article  Google Scholar 

  39. Yang Q, Xia C, Deng Y et al (2019) Microstructure and mechanical properties of AlSi7Mg0.6 aluminum alloy fabricated by wire and arc additive manufacturing based on cold metal transfer (WAAM-CMT). Materials (Basel) 12:2525. https://doi.org/10.3390/ma12162525

    Article  Google Scholar 

  40. Gu J, Ding J, Williams SW et al (2016) The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3Cu alloy. Mater Sci Eng A 651:18–26. https://doi.org/10.1016/j.msea.2015.10.101

    Article  Google Scholar 

  41. Dong M, Zhao Y, Li Q et al (2021) Microstructure evolution and mechanical property anisotropy of wire and arc-additive-manufactured wall structure using ER2319 welding wires. J Mater Eng Perform 30:258–268. https://doi.org/10.1007/s11665-020-05336-1

    Article  Google Scholar 

  42. Wang P, Hu S, Shen J, Liang Y (2017) Characterization the contribution and limitation of the characteristic processing parameters in cold metal transfer deposition of an Al alloy. J Mater Process Technol 245:122–133. https://doi.org/10.1016/j.jmatprotec.2017.02.019

    Article  Google Scholar 

  43. Ryan EM, Sabin TJ, Watts JF, Whiting MJ (2018) The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319. J Mater Process Technol 262:577–584. https://doi.org/10.1016/j.jmatprotec.2018.07.030

    Article  Google Scholar 

  44. Sun J, Hensel J, Köhler M, Dilger K (2021) Residual stress in wire and arc additively manufactured aluminum components. J Manuf Process 65:97–111. https://doi.org/10.1016/j.jmapro.2021.02.021

    Article  Google Scholar 

  45. Fang X, Zhang L, Yang J et al (2019) Effect of characteristic substrate parameters on the deposition geometry of CMT additive manufactured Al–6.3%Cu alloy. Appl Therm Eng 162:114302. https://doi.org/10.1016/j.applthermaleng.2019.114302

    Article  Google Scholar 

  46. Ding Y, Muñiz-Lerma JA, Trask M et al (2016) Microstructure and mechanical property considerations in additive manufacturing of aluminum alloys. MRS Bull 41:745–751. https://doi.org/10.1557/mrs.2016.214

    Article  Google Scholar 

  47. Chen J, Wei H, Zhang X et al (2021) Flow behavior and microstructure evolution during dynamic deformation of 316 L stainless steel fabricated by wire and arc additive manufacturing. Mater Des 198:109325. https://doi.org/10.1016/j.matdes.2020.109325

    Article  Google Scholar 

  48. Chen J, Wei H, Bao K et al (2021) Dynamic mechanical properties of 316L stainless steel fabricated by an additive manufacturing process. J Mater Res Technol 11:170–179. https://doi.org/10.1016/j.jmrt.2020.12.097

    Article  Google Scholar 

  49. Ali Y, Henckell P, Hildebrand J et al (2019) Wire arc additive manufacturing of hot work tool steel with CMT process. J Mater Process Technol 269:109–116. https://doi.org/10.1016/j.jmatprotec.2019.01.034

    Article  Google Scholar 

  50. Ge J, Ma T, Chen Y et al (2019) Wire-arc additive manufacturing H13 part: 3D pore distribution, microstructural evolution, and mechanical performances. J Alloys Compd 783:145–155. https://doi.org/10.1016/j.jallcom.2018.12.274

    Article  Google Scholar 

  51. Wang Z, Beese AM (2017) Effect of chemistry on martensitic phase transformation kinetics and resulting properties of additively manufactured stainless steel. Acta Mater 131:410–422. https://doi.org/10.1016/j.actamat.2017.04.022

    Article  Google Scholar 

  52. Ge J, Lin J, Lei Y, Fu H (2018) Location-related thermal history, microstructure, and mechanical properties of arc additively manufactured 2Cr13 steel using cold metal transfer welding. Mater Sci Eng A 715:144–153. https://doi.org/10.1016/j.msea.2017.12.076

    Article  Google Scholar 

  53. Rodriguez N, Vázquez L, Huarte I et al (2018) Wire and arc additive manufacturing: a comparison between CMT and TopTIG processes applied to stainless steel. Weld World 62:1083–1096. https://doi.org/10.1007/s40194-018-0606-6

    Article  Google Scholar 

  54. Sun L, Jiang F, Huang R et al (2020) Anisotropic mechanical properties and deformation behavior of low-carbon high-strength steel component fabricated by wire and arc additive manufacturing. Mater Sci Eng A 787:139514. https://doi.org/10.1016/j.msea.2020.139514

    Article  Google Scholar 

  55. Nikam PP, Arun D, Ramkumar KD, Sivashanmugam N (2020) Microstructure characterization and tensile properties of CMT-based wire plus arc additive manufactured ER2594. Mater Charact 169:110671. https://doi.org/10.1016/j.matchar.2020.110671

    Article  Google Scholar 

  56. Tian G, Wang X, Wang W et al (2021) Microstructure, mechanical properties, and galvanic corrosion of 10CrNi3MoV fabricated by wire arc additive manufacturing. Metals (Basel) 11:1235. https://doi.org/10.3390/met11081235

    Article  Google Scholar 

  57. Dirisu P, Ganguly S, Mehmanparast A et al (2019) Analysis of fracture toughness properties of wire + arc additive manufactured high strength low alloy structural steel components. Mater Sci Eng A 765:138285. https://doi.org/10.1016/j.msea.2019.138285

    Article  Google Scholar 

  58. Wang C, Liu TG, Zhu P et al (2020) Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing. Mater Sci Eng A 796:140006. https://doi.org/10.1016/j.msea.2020.140006

    Article  Google Scholar 

  59. Zhang X, Zhou Q, Wang K et al (2019) Study on microstructure and tensile properties of high nitrogen Cr–Mn steel processed by CMT wire and arc additive manufacturing. Mater Des 166:107611. https://doi.org/10.1016/j.matdes.2019.107611

    Article  Google Scholar 

  60. Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propuls Power 22:361–374. https://doi.org/10.2514/1.18239

    Article  Google Scholar 

  61. Dhinakaran V, Ajith J, Fathima Yasin Fahmidha A et al (2020) Wire Arc Additive Manufacturing (WAAM) process of nickel based superalloys—a review. Mater Today Proc 21:920–925. https://doi.org/10.1016/j.matpr.2019.08.159

    Article  Google Scholar 

  62. Wang Y, Chen X, Konovalov SV (2017) Additive manufacturing based on welding arc: a low-cost method. J Surf Investig X-ray Synchrotron Neutron Tech 11:1317–1328. https://doi.org/10.1134/S1027451017060210

    Article  Google Scholar 

  63. Baufeld B (2012) Mechanical properties of INCONEL 718 parts manufactured by shaped metal deposition (SMD). J Mater Eng Perform 21:1416–1421. https://doi.org/10.1007/s11665-011-0009-y

    Article  Google Scholar 

  64. Kindermann RM, Roy MJ, Morana R, Prangnell PB (2020) Process response of Inconel 718 to wire + arc additive manufacturing with cold metal transfer. Mater Des 195:109031. https://doi.org/10.1016/j.matdes.2020.109031

    Article  Google Scholar 

  65. Wang Y, Chen X, Shen Q et al (2021) Effect of magnetic field on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by wire arc additive manufacturing. J Manuf Process 64:10–19. https://doi.org/10.1016/j.jmapro.2021.01.008

    Article  Google Scholar 

  66. Van D, Dinda GP, Park J et al (2020) Enhancing hardness of Inconel 718 deposits using the aging effects of cold metal transfer-based additive manufacturing. Mater Sci Eng A 776:139005. https://doi.org/10.1016/j.msea.2020.139005

    Article  Google Scholar 

  67. Yangfan W, Xizhang C, Chuanchu S (2019) Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing. Surf Coat Technol 374:116–123. https://doi.org/10.1016/j.surfcoat.2019.05.079

    Article  Google Scholar 

  68. Xu F, Lv Y, Liu Y et al (2013) Microstructural evolution and mechanical properties of Inconel 625 alloy during pulsed plasma arc deposition process. J Mater Sci Technol 29:480–488. https://doi.org/10.1016/j.jmst.2013.02.010

    Article  Google Scholar 

  69. Bauccio M (1993) ASM metals reference book. ASM International, Materials Park

    Google Scholar 

  70. Froes FH, Whittaker M (2022) Titanium and its alloys. In: Encyclopedia of materials: metals and alloys. Elsevier, pp 287–293. https://doi.org/10.1016/B978-0-12-819726-4.00066-1

  71. Tian Y, Shen J, Hu S et al (2021) Effects of cold metal transfer mode on the reaction layer of wire and arc additive-manufactured Ti–6Al–4V/Al–6.25Cu dissimilar alloys. J Mater Sci Technol 74:35–45. https://doi.org/10.1016/j.jmst.2020.09.014

    Article  Google Scholar 

  72. Xu N, Shen J, Hu S et al (2021) Bimetallic structure of Ti6Al4V and Al6.21Cu fabricated by cold metal transfer additive manufacturing via Nb interlayer added by TIG. Mater Lett 302:130397. https://doi.org/10.1016/j.matlet.2021.130397

    Article  Google Scholar 

  73. Antonysamy A (2012) Microstructure, texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applications. Ph.D. thesis, University of Manchester, Manchester, UK

  74. Zhou S, Xie H, Ni J et al (2022) Metal transfer behavior during CMT-based wire arc additive manufacturing of Ti–6Al–4V alloy. J Manuf Process 82:159–173. https://doi.org/10.1016/j.jmapro.2022.07.063

    Article  Google Scholar 

  75. Caballero A, Ding J, Bandari Y, Williams S (2019) Oxidation of Ti–6Al–4V during wire and arc additive manufacture. 3D Print Addit Manuf 6:91–98. https://doi.org/10.1089/3dp.2017.0144

    Article  Google Scholar 

  76. Wu B, Ding D, Pan Z et al (2017) Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V. J Mater Process Technol 250:304–312. https://doi.org/10.1016/j.jmatprotec.2017.07.037

    Article  Google Scholar 

  77. ASTM F1472-20a (2020) Standard specification for wrought Ti–6Al–4V alloy for surgical implant applications (UNS R56400). ASTM International, West Conshohocken

    Google Scholar 

  78. ASTM F1108–21 (2021) Standard specification for Ti–6Al–4V alloy castings for surgical implants (UNS R56406). ASTM International, West Conshohocken

    Google Scholar 

  79. Vazquez L, Rodriguez MN, Rodriguez I, Alvarez P (2021) Influence of post-deposition heat treatments on the microstructure and tensile properties of Ti–6Al–4V parts manufactured by CMT-WAAM. Metals (Basel). https://doi.org/10.3390/met11081161

    Article  Google Scholar 

  80. Pardal G, Martina F, Williams S (2019) Laser stabilization of GMAW additive manufacturing of Ti-6Al-4V components. J Mater Process Technol 272:1–8. https://doi.org/10.1016/j.jmatprotec.2019.04.036

    Article  Google Scholar 

  81. Mordike B, Ebert T (2001) Magnesium. Mater Sci Eng A 302:37–45. https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  82. Zheng L, Nie H, Liang W et al (2016) Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys. J Magnes Alloy 4:115–122. https://doi.org/10.1016/j.jma.2016.04.002

    Article  Google Scholar 

  83. Xu SW, Matsumoto N, Kamado S et al (2009) Effect of Mg17Al12 precipitates on the microstructural changes and mechanical properties of hot compressed AZ91 magnesium alloy. Mater Sci Eng A 523:47–52. https://doi.org/10.1016/j.msea.2009.05.032

    Article  Google Scholar 

  84. Celotto S (2000) TEM study of continuous precipitation in Mg–9 wt%Al–1 wt%Zn alloy. Acta Mater 48:1775–1787. https://doi.org/10.1016/S1359-6454(00)00004-5

    Article  Google Scholar 

  85. Bi J, Shen J, Hu S et al (2020) Microstructure and mechanical properties of AZ91 Mg alloy fabricated by cold metal transfer additive manufacturing. Mater Lett 276:128185. https://doi.org/10.1016/j.matlet.2020.128185

    Article  Google Scholar 

  86. Gneiger S, Österreicher JA, Arnoldt AR et al (2020) Development of a high strength magnesium alloy for wire arc additive manufacturing. Metals (Basel) 10:1–14. https://doi.org/10.3390/met10060778

    Article  Google Scholar 

  87. Xie W, Xu N, Wang C, Peng X (2013) Effects of Sr, Y on Microstructure and mechanical properties of AZ31 alloy. Hot Work Technol 40(1):12–16

    Google Scholar 

  88. Yang X, Liu J, Wang Z et al (2020) Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process. Mater Sci Eng A 774:138942. https://doi.org/10.1016/j.msea.2020.138942

    Article  Google Scholar 

  89. Klein T, Arnoldt A, Schnall M, Gneiger S (2021) Microstructure formation and mechanical properties of a wire-arc additive manufactured magnesium alloy. JOM 73:1126–1134. https://doi.org/10.1007/s11837-021-04567-4

    Article  Google Scholar 

  90. Wang Y, Chen X, Konovalov S et al (2019) In-situ wire-feed additive manufacturing of Cu–Al alloy by addition of silicon. Appl Surf Sci 487:1366–1375. https://doi.org/10.1016/j.apsusc.2019.05.068

    Article  Google Scholar 

  91. Rajeev GP, Rahul MR, Kamaraj M, Bakshi SR (2020) Microstructure and high temperature mechanical properties of wire arc additively deposited Stellite 6 alloy. Materialia 12:100724. https://doi.org/10.1016/j.mtla.2020.100724

    Article  Google Scholar 

  92. Yu L, Chen K, Zhang Y et al (2022) Microstructures and mechanical properties of NiTi shape memory alloys fabricated by wire arc additive manufacturing. J Alloys Compd 892:162193. https://doi.org/10.1016/j.jallcom.2021.162193

    Article  Google Scholar 

  93. Tomar B, Shiva S (2022) Microstructure evolution in steel/copper graded deposition prepared using wire arc additive manufacturing. Mater Lett. https://doi.org/10.1016/j.matlet.2022.133217

    Article  Google Scholar 

  94. Senthil TS, Ramesh Babu S, Puviyarasan M, Dhinakaran V (2021) Mechanical and microstructural characterization of functionally graded Inconel 825-SS316L fabricated using wire arc additive manufacturing. J Mater Res Technol 15:661–669. https://doi.org/10.1016/j.jmrt.2021.08.060

    Article  Google Scholar 

  95. Zheng B, Zhou Y, Smugeresky JE et al (2008) Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: part I. Numerical calculations. Metall Mater Trans A Phys Metall Mater Sci 39:2228–2236. https://doi.org/10.1007/s11661-008-9557-7

    Article  Google Scholar 

  96. Yang D, Wang G, Zhang G (2017) Thermal analysis for single-pass multi-layer GMAW based additive manufacturing using infrared thermography. J Mater Process Technol 244:215–224. https://doi.org/10.1016/j.jmatprotec.2017.01.024

    Article  Google Scholar 

  97. da Silva LJ, Ferraresi HN, Araújo DB et al (2021) Effect of thermal management approaches on geometry and productivity of thin-walled structures of ER 5356 built by wire + arc additive manufacturing. Coatings 11:1141. https://doi.org/10.3390/coatings11091141

    Article  Google Scholar 

  98. da Silva LJ, Souza DM, de Araújo DB et al (2020) Concept and validation of an active cooling technique to mitigate heat accumulation in WAAM. Int J Adv Manuf Technol 107:2513–2523. https://doi.org/10.1007/s00170-020-05201-4

    Article  Google Scholar 

  99. Scotti FM, Teixeira FR, da Silva LJ et al (2020) Thermal management in WAAM through the CMT Advanced process and an active cooling technique. J Manuf Process 57:23–35. https://doi.org/10.1016/j.jmapro.2020.06.007

    Article  Google Scholar 

  100. Wu Q, Lu J, Liu C et al (2017) Effect of molten pool size on microstructure and tensile properties of wire arc additive manufacturing of Ti–6Al–4V Alloy. Materials (Basel) 10:749. https://doi.org/10.3390/ma10070749

    Article  Google Scholar 

  101. Wang S, Gu H, Wang W et al (2020) Study on microstructural and mechanical properties of an Al–Cu–Sn alloy wall deposited by double-wire arc additive manufacturing process. Materials (Basel). https://doi.org/10.3390/ma13010073

    Article  Google Scholar 

  102. Klein T, Birgmann A, Schnall M (2020) In situ alloying of aluminium-based alloys by (multi-)wire-arc additive manufacturing. MATEC Web Conf 326:01003. https://doi.org/10.1051/matecconf/202032601003

    Article  Google Scholar 

  103. Kazanas P, Deherkar P, Almeida P et al (2012) Fabrication of geometrical features using wire and arc additive manufacture. Proc Inst Mech Eng Part B J Eng Manuf 226:1042–1051. https://doi.org/10.1177/0954405412437126

    Article  Google Scholar 

  104. Panchagnula JS, Simhambhatla S (2018) Manufacture of complex thin-walled metallic objects using weld-deposition based additive manufacturing. Robot Comput Integr Manuf 49:194–203. https://doi.org/10.1016/j.rcim.2017.06.003

    Article  Google Scholar 

  105. Yan Z, Zhao Y, Jiang F et al (2021) Metal transfer behaviour of CMT-based step-over deposition in fabricating slant features. J Manuf Process 71:147–155. https://doi.org/10.1016/j.jmapro.2021.09.027

    Article  Google Scholar 

  106. Gu J, Ding J, Williams SW et al (2016) The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys. J Mater Process Technol 230:26–34. https://doi.org/10.1016/j.jmatprotec.2015.11.006

    Article  Google Scholar 

  107. Cong B, Ouyang R, Qi B, Ding J (2016) Influence of cold metal transfer process and its heat input on weld bead geometry and porosity of aluminum-copper alloy welds. Rare Metals Mater Eng 45:606–611. https://doi.org/10.1016/S1875-5372(16)30080-7

    Article  Google Scholar 

  108. Cong B, Ding J, Williams S (2015) Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al–6.3%Cu alloy. Int J Adv Manuf Technol 76:1593–1606. https://doi.org/10.1007/s00170-014-6346-x

    Article  Google Scholar 

  109. Cong B, Qi Z, Qi B et al (2017) A comparative study of additively manufactured thin wall and block structure with Al–6.3%Cu alloy using cold metal transfer process. Appl Sci. https://doi.org/10.3390/APP7030275

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BT was involved in conceptualization, investigation, data curation, and writing the original draft. SS was responsible for supervision and writing—reviewing and editing.

Corresponding author

Correspondence to S. Shiva.

Ethics declarations

Competing interests

The authors hereby declare that they have no as known competing financial interests or personal relationships that could have appeared in influencing the work reported in this manuscript.

Additional information

Technical Editor: Lincoln Cardoso Brandao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomar, B., Shiva, S. Cold metal transfer-based wire arc additive manufacturing. J Braz. Soc. Mech. Sci. Eng. 45, 157 (2023). https://doi.org/10.1007/s40430-023-04084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04084-2

Keywords

Navigation