Skip to main content
Log in

dSPACE-based dual randomized pulse width modulation for acoustic noise mitigation in induction motor

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The randomized pulse width modulation (RPWM) technique has gained an increasing interest as an effective method to reduce electromagnetic interference and acoustic noise in electrical drives. This modulation technique involves three schemes, two simple schemes (one random parameter): randomized pulse position modulation (RPPM) and randomized carrier frequency modulation (RCFM), and a dual scheme combining the two previous ones (RCFM-RPPM or dual RPWM: DRPWM). This paper proposes an online implementation of the DRPWM scheme based on the dSPACE DS1104 platform for the control of a voltage source inverter (VSI) fed induction motor. The main aims are (1) to prove the feasibility of the practical implementation of the proposed RPWM schemes and (2) to show the effectiveness of the DRPWM scheme in spreading the spectrum of voltage, current and acoustic noise in an induction motor drive. Analytical and simulation results show that DRPWM is the most effective in spreading the spectrum. The experimental results confirm the analytical and simulation results and prove the effectiveness of the DRPWM scheme in reducing acoustic noise compared to simple schemes (RPPM and RCFM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Le Besnerais J, Lanfranchi V, Hecquet M et al (2010) Characterization and reduction of audible magnetic noise due to PWM supply in induction machines. IEEE Trans Ind Electron 57:1288–1295. https://doi.org/10.1109/TIE.2009.2029529

    Article  Google Scholar 

  2. Amlinger H, Arteaga IL, Leth S (2017) Impact of PWM switching frequency on the radiated acoustic noise from a traction motor. In: 2017 20th international conference on electrical machines and systems (ICEMS). IEEE. Sydney. DOI: https://doi.org/10.1109/ICEMS.2017.8056206

  3. Bech MM, Pedersen JK, Blaabjerg F (2001) Field-oriented control of an induction motor using random pulse width modulation. IEEE Trans Ind Appl 37:1777–1785. https://doi.org/10.1109/APEC.2000.822615

    Article  Google Scholar 

  4. Na S, Jung Y, Lim Y et al (2002) Reduction of audible switching noise in induction motor drives using random position space vector PWM. IEE Proc Electr Power 149:195–200. https://doi.org/10.1049/ip-epa:20020244

    Article  Google Scholar 

  5. Trzynadlowski AM, Borisov K, Li Y, Qin L, Wang Z (2004) Mitigation of electromagnetic interference and acoustic noise in vehicular drives by random pulse width modulation. In: Power Electronics in Transportation, IEEE, Novi, pp 67–71. DOI: https://doi.org/10.1109/PET.2004.1393799

  6. Trzynadlowski AM (2006) Active attenuation of electromagnetic noise in an inverter-fed automotive electric drive system. IEEE Trans Power Electron 21:693–700. https://doi.org/10.1109/TPEL.2006.872368

    Article  Google Scholar 

  7. Borisov K, Calvert TE, Kleppe JA et al (2006) Experimental investigation of a naval propulsion drive model with the PWM-based attenuation of the acoustic and electromagnetic noise. IEEE Trans Ind Electron 53:450–457. https://doi.org/10.1109/IECON.2003.1279947

    Article  Google Scholar 

  8. Schulz SE, Kowalewski DL (2007) Implementation of variable-delay random PWM for automotive applications. IEEE Trans Veh Technol 56:1427–1433. https://doi.org/10.1109/TVT.2007.895558

    Article  Google Scholar 

  9. Chai J, Ho Y, Chang Y et al (2008) On acoustic-noise-reduction control using random switching technique for switch-mode rectifier in PMSM drive. IEEE Trans Ind Electron 55:1295–1309. https://doi.org/10.1109/TIE.2007.909759

    Article  Google Scholar 

  10. Lim Y, Jung Y, Oh S et al (2012) A two-phase separately randomized pulse position PWM (SRP-PWM) scheme with low switching noise characteristics over the entire modulation index. IEEE Trans Power Electron 27:362–369. https://doi.org/10.1109/TPEL.2010.2087361

    Article  Google Scholar 

  11. Mathe L, Lungeanu F, Sera D et al (2012) Spread spectrum modulation using asymmetric-carrier random PWM. IEEE Trans Ind Electron 59:3710–3718. https://doi.org/10.1109/TIE.2011.2179272

    Article  Google Scholar 

  12. Ruiz-Gonzalez A, Vargas-Merino F, Heredia-Larrubia JR et al (2013) Application of slope PWM strategies to reduce acoustic noise radiated by inverter-fed induction motors. IEEE Trans Ind Electron 60:2555–2563. https://doi.org/10.1109/TIE.2012.2196892

    Article  Google Scholar 

  13. Peyghambari A, Dastfan A, Ahmadyfard A (2015) Strategy for switching period selection in random pulse width modulation to shape the noise spectrum. IET Power Electron 8:517–523. https://doi.org/10.1049/iet-pel.2014.0118

    Article  Google Scholar 

  14. Bhattacharya S, Mascarella D, Joos G et al (2015) A discrete random PWM technique for acoustic noise reduction in electric traction drives. In: Proceedings IEEE. Energy conversion congress and exposition (ECCE), Montreal, pp 6811–6817. DOI: https://doi.org/10.1109/ECCE.2015.7310613

  15. Huang Y, Xu Y, Zhang W et al (2019) Hybrid RPWM technique based on modified SVPWM to reduce the PWM acoustic noise. IEEE Trans Power Electron 34:5667–5674. https://doi.org/10.1109/TPEL.2018.2869980

    Article  Google Scholar 

  16. Mohan Das R, Chandira Sekaran E (2019) A cloud system model employing random space vector pulse width modulation for noise reduction in VSI fed induction motor. Cluster Comput 22:347–360. https://doi.org/10.1007/s10586-018-1956-y

    Article  Google Scholar 

  17. Mihali F, Kos D (2006) Reduced conductive EMI in switched-mode DC–DC power converters without EMI filters: PWM versus randomized PWM. IEEE Trans Power Electron 21:1783–1794. https://doi.org/10.1109/TPEL.2006.882910

    Article  Google Scholar 

  18. Lai Y, Chen B (2013) New random PWM technique for a Full-Bridge DC/DC converter with harmonics intensity reduction and considering efficiency. IEEE Trans Power Electron 28:5013–5023. https://doi.org/10.1109/TPEL.2013.2240393

    Article  Google Scholar 

  19. Cui K, Adrian V, Gwee B et al (2017) A noise-shaped randomized modulation for switched-mode DC-DC converters. IEEE Trans. Circuits and Syst. I. Reg Papers 65:394–405. https://doi.org/10.1109/TCSI.2017.2719700

    Article  Google Scholar 

  20. Kirlin RL, Bech MM, Trzynadlowski AM (2002) Analysis of power and power spectral density in PWM inverters with randomized switching frequency. IEEE Trans Ind Electron 49:486–499. https://doi.org/10.1109/41.993282

    Article  Google Scholar 

  21. Lezynski P (2017) Random modulation in inverters with respect to electromagnetic compatibility and power quality. IEEE Trans. Emerg Sel Topics Power Electron 6:782–790. https://doi.org/10.1109/JESTPE.2017.2787599

    Article  Google Scholar 

  22. El Khamlichi Drissi K, Luck PCK, Wang B et al (2003) A novel dual-randomization PWM scheme for power converters. In: Proceedings of IEEE PESC’03, Acapulco, Mexicopp, pp 480–484. DOI: https://doi.org/10.1109/PESC.2003.1218102

  23. Boudouda A, Boudjerda N, Melit M et al (2012) Optimized RPWM technique for a variable speed drive using induction motor. In: Proceedings of EMC Europe, Rome, Italy, pp 1–6. DOI: https://doi.org/10.1109/EMCEurope.2012.6396741

  24. Boudjerda N, Boudouda A, Melit M et al (2014) Spread spectrum in three-phase inverter by an optimised dual randomised PWM technique. Int J Electron 101:308–324. https://doi.org/10.1080/00207217.2013.780299

    Article  Google Scholar 

  25. Boudouda A, Boudjerda N, El Khamlichi DK et al (2016) Combined random space vector modulation for a variable speed drive using induction motor. Electr Eng Arch Elktrotech 98:1–15. https://doi.org/10.1007/s00202-015-0341-6

    Article  Google Scholar 

  26. Welch P (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73. https://doi.org/10.1109/TAU.1967.1161901

    Article  Google Scholar 

  27. Kim K, Jung Y, Lim Y (2009) A new hybrid random PWM scheme. IEEE Trans Power Electron 24:192–200. https://doi.org/10.1109/TPEL.2008.2006613

    Article  Google Scholar 

  28. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623- dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul 8:3–30. https://doi.org/10.1145/272991.272995

    Article  MATH  Google Scholar 

  29. Middletton D (1996) Introduction to statistical communication theory. Wiley-IEEE Press, Hoboken

    Google Scholar 

  30. Matlab, (2004) Signal processing toolbox. The Math Work Inc., Natick

    Google Scholar 

  31. Bech MM, Pedersen JK, Blaabjerg F et al (1999) A methodology for true comparison of analytical and measured frequency domain spectra in random PWM converters. IEEE Trans Power Electron 14:578–586. https://doi.org/10.1109/63.761702

    Article  Google Scholar 

  32. Kroneisl M, Smidl V, Peroutka Z et al (2019) Adaptation of predictive acoustic noise control of IM drive to variable operating conditions. IEEE Trans Ind Electron Early Access. https://doi.org/10.1109/PRECEDE.2019.8753187

    Article  Google Scholar 

  33. Bouyahi H, Ben Smida K, Khedher A (2019) Experimental study of PWM strategy effect on acoustic noise generated by inverter-fed induction machine. Int Trans Electr Energ Syst 30:e12249. https://doi.org/10.1002/2050-7038.12249

    Article  Google Scholar 

  34. Li Y, Wu H, Si Q, Liu Y (2020) Vibration noise suppression approach based on random switching frequency (RSF) control for permanent magnet motor. Trans Can Soc Mech Eng 45:444–460. https://doi.org/10.1139/tcsme-2020-0075

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimad Boudouda.

Additional information

Technical Editor: Jarir Mahfoud.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: pwelch function

The settings of the pwelch function used in this study are given in Table 4.

According to the Nyquist sampling theorem, the sampling frequency Fs should be at least equal to twice the maximum frequency of the considered signal (\(Fs \ge 2f_{\max }\)). In our work, the PSD of voltage, current, and acoustic noise are performed on a frequency range of fmax = 19.230 kHz (which is practically the maximum frequency of sounds audible to the human ear). According to the Nyquist sampling theorem, (\(Fs \ge 2f_{\max }\)), thus:

$${\text{Fs}} = 2f_{\max } = 2 \times 19.230 = 38.460\;{\text{kHz}}{.}$$

For a record time ΔT = 0.6 s, the number of sampled points is:

$$N = {\text{Fs}} \times \Delta T = 38460 \times 0.6 = 23076$$

Using NFFT = 10,000 (NFFT: The number of discrete FFT samples used to calculate the estimated PSD), we obtain the following resolution frequency:

$$\Delta f = \frac{{{\text{Fs}}}}{{{\text{NFFT}}}} = 3.846{\text{ Hz}}{.}$$

For a hamming window (used in the Welch method), the effective resolution bandwidth (RBW) is:

$${\text{RBW}} = 1.3626 \times \Delta f = 1.3626 \times 3.846 = 5.24{\text{ Hz}}{.}$$

This frequency resolution is 7.6 times smaller than the frequency separation between two adjacent harmonics spaced 40 Hz apart, which is enough for the analysis of low- and high-frequency harmonics.

Appendix B: Induction motor ratings

The motor ratings are given in Table 5.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudouda, A., Boudjerda, N. & Aibeche, A. dSPACE-based dual randomized pulse width modulation for acoustic noise mitigation in induction motor. J Braz. Soc. Mech. Sci. Eng. 44, 493 (2022). https://doi.org/10.1007/s40430-022-03814-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03814-2

Keywords

Navigation