Skip to main content
Log in

Condensation heat transfer of R1234ze(E)/R152a in horizontal tube and development of correlation

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The flow condensation heat transfer performances of NCUR01, composed of R1234ze(E) and R152a by mass ratio 40:60, in horizontal smooth tubes with the inner diameter of 4 mm and 6 mm were investigated experimentally. Condensation heat transfer coefficients were measured in the region of mass flux from 100 to 200 kg m−2 s−1, heat flux from 5 to 10 kW m−2, saturation temperature from 303.15 K to 313.15 K and vapor quality from 0.1 to 1. The influence of mass flux, heat flux, saturation temperature, vapor quality and diameter on condensation heat transfer coefficients were analyzed. Experimental values of condensation heat transfer coefficient of smooth tube were also compared to the predicted values obtained by some well-known existing correlations. The mean absolute deviations of six selected correlations, for the condensation heat transfer coefficient of smooth tube, were estimated to be more than 30%. So, based on experimental data and some dimensionless parameters such as equivalent Reynolds number Reeq, condensation number Co and Bond number Bd, a new correlation was proposed to predict the condensation heat transfer coefficients of NCUR01. The mean absolute deviation of the new correlation is only 15.15% and absolute deviation within 30% occurs in 82% of data predicted by the proposed correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Q :

Heat transfer rate (W)

c p :

Specific heat capacity at constant pressure (J kg1 K1)

q :

Heat flux (kW m2)

q v :

Volume flow rate (m3 s1)

ρ :

Density (kg m3)

d :

Inside diameter (mm)

d c :

Hydraulic diameter

D :

Outside diameter (mm)

L ef :

Effective length of the test tube (mm)

G :

Mass flux (kW m2 s1)

M :

Mass flow rate (kg s1)

X :

Vapor quality

Δt m :

Mean logarithmic temperature (°C)

T :

Temperature (°C)

A i :

Internal surface area (m2)

A o :

External surface area (m2)

G :

Gravitational acceleration, 9.81 m s2

H :

Surface heat transfer coefficient (W m2 K1)

R :

Single error

Xi :

Factor affecting R

MRD:

The mean relative deviation

MAD:

The mean absolute relative deviation

N :

The number of date point

P :

Pressure (KPa)

h lv :

Latent heat of vaporization (J kg1)

Re:

Reynolds number

Xtt:

Martinelli number

Pr:

Prandtl number

Co:

Condensation number

S v :

Dimensionless specific volume

λ c :

Thermal conductivity of cooper (W m2 K1)

μ :

Dynamic viscosity (Pa s)

δR :

Systematic error

δx i :

Value of the factor affecting R

σ :

Surface tension (N m1)

δ :

Wall thickness (mm)

w:

Cooling water

out:

Outlet

in:

Inlet

r:

Refrigerant

s:

Saturation

pred:

Prediction results

exp:

Experimental data

l:

Liquid

c:

Critical

v:

Vapor

eq:

Equivalent

References

  1. Huo EG, Dai YD, Geng P, Cao MC (2015) Feasibility of using R1234ze and R152a mixture as alternative for R22. Ciesc J 66(12):4725–4729

    Google Scholar 

  2. Liu N, Xiao H, Li J (2016) Experimental investigation of condensation heat transfer and pressure drop of propane, R1234ze(E) and R22 in minichannels. Appl Therm Eng 102:63–72. https://doi.org/10.1016/j.applthermaleng.2016.03.073

    Article  Google Scholar 

  3. Fazelnia H, Sajadi B, Azarhazin S, Behabadi M, Zakeralhoseini S (2019) Experimental study of the heat transfer coefficient and pressure drop of R1234yf condensing flow in flattened smooth tubes. Int J Refrig 106:120–132. https://doi.org/10.1016/j.ijrefrig.2019.06.003

    Article  Google Scholar 

  4. Zakeralhoseini S, Sajadi B, Behabadi M, Azarhazin S, Fazelnia HJ (2020) Experimental investigation of the heat transfer coefficient and pressure drop of R1234yf during flow condensation in helically coiled tubes. Int J Therm Sci 157:106517. https://doi.org/10.1016/j.ijthermalsci.2020.106516

    Article  Google Scholar 

  5. Wu JH, Zou SK, Wang LL, Dai YD (2021) Condensation heat transfer of R290 in micro-fin tube with inside diameter of 6.3 mm. Exp Heat Transf 34(1):1–17. https://doi.org/10.1080/08916152.2020.1713255

    Article  Google Scholar 

  6. Mazumder S, Afroz H, Hossain MA, Miyara A, Talukdar S (2021) Study of in-tube condensation heat transfer of zeotropic R32/R1234ze(E) mixture refrigerants. Int J Heat Mass Tran 169:125809

    Article  Google Scholar 

  7. Ammar SM, Min WS, Kim MS, Park CW (2022) Condensing heat transfer performance in small-diameter enhanced tubes of absorption refrigeration system: an experimental investigation. Int Commun Heat Mass. https://doi.org/10.1016/j.icheatmasstransfer.2022.106113

    Article  Google Scholar 

  8. Shah MM (1979) A general correlation for heat transfer during film condensation inside pipes – ScienceDirect. Int J Heat Mass Transf 22(4):547–556. https://doi.org/10.1016/0017-9310(79)90058-9

    Article  Google Scholar 

  9. Dobson MK, Chato JC (1998) Condensation in Smooth Horizontal Tubes. J Heat Transf 120(1):193–213

    Article  Google Scholar 

  10. Chen SL, Gerner FM, Tien CL (1987) General film condensation correlations. Exp Heat Transf 1(2):93–107. https://doi.org/10.1080/08916158708946334

    Article  Google Scholar 

  11. Cavallini A, Del Col D, Doretti L, Matkovic M, Rossetto L, Zilio C, Censi G (2006) Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design. Heat Transf Eng 27(8):31–38. https://doi.org/10.1080/01457630600793970

    Article  Google Scholar 

  12. Cavallini A, Del Col D, Mancin S, Rossetto L (2008) Condensation of pure and near-azeotropic refrigerants in microfin tubes: a new computational procedure. Int J Refrig 32(1):162–174. https://doi.org/10.1016/j.ijrefrig.2008.08.004

    Article  Google Scholar 

  13. Kim S, Mudawar I (2013) Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow. Int J Heat Mass Transf 56(1–2):238–250. https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.032

    Article  Google Scholar 

  14. Inoue N, Hirose M, Jige D, Ichinose J (2018) Correlation for condensation heat transfer in a 4.0 mm smooth tube and relationship with R1234ze(E), R404A, and R290. Appl Sci 8(11):2267. https://doi.org/10.3390/app8112267

    Article  Google Scholar 

  15. Yang Y, Li M, Wu W, Zhang H, Ma Y (2019) Condensation heat transfer characteristics of R1234ze (E) and R32 in a minihorizontal smooth tube. Sci Technol Built Environ 25(4):1–16. https://doi.org/10.1080/23744731.2019.1581014

    Article  Google Scholar 

  16. Baird JR, Fletcher DF, Haynes BS (2003) Local condensation heat transfer rates in fine passages. Int J Heat Mass Transf 46(23):4453–4466

    Article  Google Scholar 

  17. Morrow JA, Derby MM (2022) Flow condensation heat transfer and pressure drop of R134a alternative refrigerants R513A and R450A in 0.95-mm diameter minichannels. Int J Heat Mass Transf 192:122894. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122894 

    Article  Google Scholar 

  18. Shah MM (2016) A correlation for heat transfer during condensation in horizontal mini/micro channels. Int J Refrig 64:187–202. https://doi.org/10.1016/j.ijrefrig.2015.12.008

    Article  Google Scholar 

  19. Cavallini A, Bortolin S, Del Col D, Matkovic M, Rossetto L (2011) Condensation heat transfer and pressure losses of high-and low-pressure refrigerants flowing in a single circular minichannel. Heat Transf Eng 32(2):90–98. https://doi.org/10.1080/01457631003769104

    Article  Google Scholar 

  20. Chang YS, Kim MS, Ro ST (2000) Performance and heat transfer characteristics of hydrocarbon refrigerants in a heat pump system. Int J Refrig 23(3):232–242. https://doi.org/10.1016/S0140-7007(99)00042-0

    Article  Google Scholar 

  21. Bashar K, Nakamura K, Kariya K, Miyara A (2020) Condensation heat transfer of R1234yf in a small diameter smooth and microfin tube and development of correlation. Int J Refrig 120:331–339. https://doi.org/10.1016/j.ijrefrig.2020.09.002

    Article  Google Scholar 

  22. Deng H, Rossato M, Fernandino M, Del Col D (2019) A new simplified model for condensation heat transfer of zeotropic mixtures inside horizontal tubes. Int J Heat Mass Transf 153:779–790. https://doi.org/10.1016/j.applthermaleng.2019.02.128

    Article  Google Scholar 

  23. Wang R, Sun T, Polzin A, Kabelac S (2021) Experimental investigation of the two-phase local heat transfer coefficients for condensation of R134a in a micro-structured plate heat exchanger. Heat Mass Transf 58:1–18. https://doi.org/10.1007/S00231-021-03091-0

    Article  Google Scholar 

  24. Singh V, Kukreja R, Sehgal SS (2022) Condensation heat transfer of R134a and R410A in multiport rectangular microchannels with different aspect ratio. Int J Therm Sci. https://doi.org/10.1016/j.ijthermalsci.2022.107696

    Article  Google Scholar 

  25. Yang S, Tao W (2006) Heat transfer 3rd. Beijing, China, pp 251–252.

  26. Moffat R (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1(1):3–17. https://doi.org/10.1016/0894-1777(88)90043-X

    Article  Google Scholar 

  27. Cavallini A, Zecchin R (1974) A dimensionless correlation for heat transfer in forced convection condensation. In: Proceedings of 5th international heat transfer conference, Tokyo, pp 309–313.

  28. Haraguchi E, Koyama H, Fugii H (1994) Condensation of refrigerant HCFC-12, HFC-134a and HCFC-123 in a horizontal smooth tube. Trans JSME 60(574):2117–2126

    Article  Google Scholar 

  29. Jaster H, Kosky P (1976) Condensation heat transfer in a mixed flow regime. Appl Therm Eng 19(1):95–99. https://doi.org/10.1016/0017-9310(76)90014-4

    Article  Google Scholar 

  30. Chato JC (1962) Laminar condensation inside horizontal and inclined tubes. Ashrae J 4:52–60

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Foundation No.22068024)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuande Dai.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Technical Editor: Ahmad Arabkoohsar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Xu, C., Qiu, K. et al. Condensation heat transfer of R1234ze(E)/R152a in horizontal tube and development of correlation. J Braz. Soc. Mech. Sci. Eng. 44, 464 (2022). https://doi.org/10.1007/s40430-022-03763-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03763-w

Keywords

Navigation