Skip to main content
Log in

Experimental, analytical and parametric evaluation of the springback behavior of MART1400 sheets

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Due to high amount of springback behavior of MART steels, a large amount of time is wasted during the manufacturing of correct die setup for the intended products. Therefore, many sheet metal forming industries rely on the predicting ability of finite element analysis to reduce their forming costs. In this study, the effects of bending parameters on the springback behavior of MART1400 steel have been investigated by conducting V-bending tests with various die angles (30°, 60°, 90°, and 120°), punch radiuses (2 mm, 4 mm and 6 mm) and force holding times (0 s, 10 s). Furthermore, the predicting ability of different isotropic hardening models (Hollomon, Ghosh, Hocket-Sherby, Swift and Voce) coupled with the Von-Misses yield criterion on the springback behavior of MART1400 steels has been investigated. Additionally, the effect of applying a local heating around the bending area of MART steel on the springback behavior has been parametrically investigated. It has been found that increasing of die angle, and punch radius have resulted in an increase of springback, while a force holding time of 10 s has decreased the springback. Application of heat at 375 °C and 475 °C around the bending area of MART1400 has resulted in 40.18% and 55.13% reduction of springback due to the lowering of strain hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Horvath CD (2010) Advanced steels for lightweight automotive structures. In: Materials, design and manufacturing for lightweight vehicles, 1st edn. Woodhead Publishing Limited, pp 35–78

  2. Dwivedi SK, Vishwakarma M (2019) Effect of hydrogen in advanced high strength steel materials. Int J Hydrogen Energy 44(51):28007–28030. https://doi.org/10.1016/j.ijhydene.2019.08.149

    Article  Google Scholar 

  3. Ul Hassan H, Traphöner H, Güner A, Tekkaya AE (2016) Accurate springback prediction in deep drawing using pre-strain based multiple cyclic stress-strain curves in finite element simulation. Int J Mech Sci 110:229–241. https://doi.org/10.1016/j.ijmecsci.2016.03.014

    Article  Google Scholar 

  4. Hensel J, Nitschke-Pagel T, Dixneit J, Dilger K (2020) Capability of martensitic low transformation temperature welding consumables for increasing the fatigue strength of high strength steel joints. Mater Test 62(9):891–899. https://doi.org/10.3139/120.111562

    Article  Google Scholar 

  5. Li H, Sun G, Li G, Gong Z, Liu D, Li Q (2011) On twist springback in advanced high-strength steels. Mater Des 32(6):3272–3279. https://doi.org/10.1016/j.matdes.2011.02.035

    Article  Google Scholar 

  6. Choi MK, Huh H (2014) Effect of punch speed on amount of springback in U-bending process of auto-body steel sheets. Procedia Eng 81(October):963–968. https://doi.org/10.1016/j.proeng.2014.10.125

    Article  Google Scholar 

  7. Xie H et al (2016) Investigation on transient electrically-assisted stress relaxation of QP980 advanced high strength steel. Mech Mater 93:238–245. https://doi.org/10.1016/j.mechmat.2015.11.007

    Article  Google Scholar 

  8. Liu X, Lan S, Ni J (2013) Experimental study of electro-plastic effect on advanced high strength steels. Mater Sci Eng A 582:211–218. https://doi.org/10.1016/j.msea.2013.03.092

    Article  Google Scholar 

  9. Neugebauer R, Scheffler S, Poprawe R, Weisheit A (2009) Local laser heat treatment of ultra high strength steels to improve formability. Prod Eng 3(4–5):347–351. https://doi.org/10.1007/s11740-009-0186-9

    Article  Google Scholar 

  10. Zhan M, Xing L, Gao PF, Ma F (2019) An analytical springback model for bending of welded tube considering the weld characteristics. Int J Mech Sci 150(July 2018):594–609. https://doi.org/10.1016/j.ijmecsci.2018.10.060

    Article  Google Scholar 

  11. Zhan M, Wang Y, Yang H, Long H (2016) An analytic model for tube bending springback considering different parameter variations of Ti-alloy tubes. J Mater Process Technol 236:123–137. https://doi.org/10.1016/j.jmatprotec.2016.05.008

    Article  Google Scholar 

  12. Jamli MR, Ariffin AK, Wahab DA (2015) Incorporating feedforward neural network within finite element analysis for L-bending springback prediction. Expert Syst Appl 42(5):2604–2614. https://doi.org/10.1016/j.eswa.2014.11.005

    Article  Google Scholar 

  13. Valinezhad M, Etemadi E, Hashemi R, Valinezhad M (2019) Experimental and FE analysis on spring-back of copper/aluminum layers sheet for a L-die bending process. Mater Res Express. https://doi.org/10.1088/2053-1591/ab51c8

    Article  Google Scholar 

  14. Quadfasel A, Lohmar J, Hirt G (2017) Investigations on springback in high manganese TWIP-steels using U-profile draw bending. Procedia Eng 207:1582–1587. https://doi.org/10.1016/j.proeng.2017.10.1052

    Article  Google Scholar 

  15. Yu Y, Min W, Haibo W, Lin H (2010) Design and optimization of press bend forming path for producing aircraft integral panels with compound curvatures. Chin J Aeronaut 23(2):274–282. https://doi.org/10.1016/S1000-9361(09)60216-8

    Article  Google Scholar 

  16. Sun Y, Qu F, Xiong Z, Ding S (2018) Numerical study on springback prediction of aged steel based on quasi-static strain-hardening material model. Procedia Manuf 15:730–736. https://doi.org/10.1016/j.promfg.2018.07.311

    Article  Google Scholar 

  17. Singh J, Kim MS, Choi SH (2017) The effect of strain heterogeneity on the deformation and failure behaviors of E-form Mg alloy sheets during a mini-V-bending test. J Alloys Compd 708:694–705. https://doi.org/10.1016/j.jallcom.2017.02.176

    Article  Google Scholar 

  18. Vorkov V, Aerens R, Vandepitte D, Duflou JR (2019) Two regression approaches for prediction of large radius air bending. Int J Mater Form 12(3):379–390. https://doi.org/10.1007/s12289-018-1422-7

    Article  Google Scholar 

  19. Şenol Ö, Esat V, Darendeliler H (2014) Springback analysis in air bending process through experiment based artificial neural networks. Procedia Eng 81(October):999–1004. https://doi.org/10.1016/j.proeng.2014.10.131

    Article  Google Scholar 

  20. Tekiner Z (2004) An experimental study on the examination of springback of sheet metals with several thicknesses and properties in bending dies. J Mater Process Technol 145(1):109–117. https://doi.org/10.1016/j.jmatprotec.2003.07.005

    Article  Google Scholar 

  21. Gan W, Wagoner RH (2004) Die design method for sheet springback. Int J Mech Sci 46(7):1097–1113. https://doi.org/10.1016/j.ijmecsci.2004.06.006

    Article  Google Scholar 

  22. Choi J, Lee J, Bong HJ, Lee MG, Barlat F (2018) Advanced constitutive modeling of advanced high strength steel sheets for springback prediction after double stage U-draw bending. Int J Solids Struct 151:152–164. https://doi.org/10.1016/j.ijsolstr.2017.09.030

    Article  Google Scholar 

  23. Toros S, Polat A, Ozturk F (2012) Formability and springback characterization of TRIP800 advanced high strength steel. Mater Des 41:298–305. https://doi.org/10.1016/j.matdes.2012.05.006

    Article  Google Scholar 

  24. Tisza M, Lukács Z (2014) Springback analysis of high strength dual-phase steels. Procedia Eng 81(October):975–980. https://doi.org/10.1016/j.proeng.2014.10.127

    Article  Google Scholar 

  25. Ghaei A, Green DE, Aryanpour A (2015) Springback simulation of advanced high strength steels considering nonlinear elastic unloading-reloading behavior. Mater Des 88:461–470. https://doi.org/10.1016/j.matdes.2015.09.012

    Article  Google Scholar 

  26. Chang Y et al (2021) Prediction of bending springback of the medium-Mn steel considering elastic modulus attenuation. J Manuf Process 67(2):345–355. https://doi.org/10.1016/j.jmapro.2021.04.074

    Article  Google Scholar 

  27. Xue X, Liao J, Vincze G, Barlat F (2017) Twist springback characteristics of dual-phase steel sheet after non-axisymmetric deep drawing. Int J Mater Form 10(2):267–278. https://doi.org/10.1007/s12289-015-1275-2

    Article  Google Scholar 

  28. Chen S, Liao J, Xiang H, Xue X, Pereira AB (2021) Pre-strain effect on twist springback of a 3D P-channel in deep drawing. J Mater Process Technol 287(April 2019):116224. https://doi.org/10.1016/j.jmatprotec.2019.05.005

    Article  Google Scholar 

  29. Lim H, Lee MG, Sung JH, Kim JH, Wagoner RH (2012) Time-dependent springback of advanced high strength steels. Int J Plast 29(1):42–59. https://doi.org/10.1016/j.ijplas.2011.07.008

    Article  Google Scholar 

  30. Béres G, Lukács Z, Tisza M (2020) Springback evaluation of tailor welded blanks at V-die bending made of DP steels. Procedia Manuf 47(2019):1366–1373. https://doi.org/10.1016/j.promfg.2020.04.266

    Article  Google Scholar 

  31. Komgrit L, Hamasaki H, Hino R, Yoshida F (2016) Elimination of springback of high-strength steel sheet by using additional bending with counter punch. J Mater Process Technol 229:199–206. https://doi.org/10.1016/j.jmatprotec.2015.08.029

    Article  Google Scholar 

  32. Pornputsiri N, Kanlayasiri K (2020) Effect of bending temperatures on the microstructure and springback of a TRIP steel sheet. Def Technol 16(5):980–987. https://doi.org/10.1016/j.dt.2019.11.018

    Article  Google Scholar 

  33. Yanagimoto J, Oyamada K, Nakagawa T (2005) Springback of high-strength steel after hot and warm sheet formings. CIRP Ann Manuf Technol 54(1):213–216. https://doi.org/10.1016/S0007-8506(07)60086-9

    Article  Google Scholar 

  34. Yanagimoto J, Oyamada K (2007) Mechanism of springback-free bending of high-strength steel sheets under warm forming conditions. CIRP Ann Manuf Technol 56(1):265–268. https://doi.org/10.1016/j.cirp.2007.05.099

    Article  Google Scholar 

  35. Mori K, Maki S, Tanaka Y (2005) Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating. CIRP Ann Manuf Technol 54(1):209–212. https://doi.org/10.1016/S0007-8506(07)60085-7

    Article  Google Scholar 

  36. Lee EH, Yoon JW, Yang DY (2018) Study on springback from thermal-mechanical boundary condition imposed to V-bending and L-bending processes coupled with infrared rays local heating. Int J Mater Form 11(3):417–433. https://doi.org/10.1007/s12289-017-1375-2

    Article  Google Scholar 

  37. Lee BH, Keum YT, Wagoner RH (2002) Modeling of the friction caused by lubrication and surface roughness in sheet metal forming. J Mater Process Technol 130–131:60–63. https://doi.org/10.1016/S0924-0136(02)00784-7

    Article  Google Scholar 

  38. Sen N (2020) Experimental investigation of the formability of ultrahigh-strength sheet material using local heat treatment. Ironmak Steelmak 47(2):93–99. https://doi.org/10.1080/03019233.2019.1680176

    Article  Google Scholar 

  39. Karaağaç İ, Uluer O (2017) Experimental investigation of effect of process parameters on springback in v bending process. Pamukkale Univ J Eng Sci 23(8):990–993. https://doi.org/10.5505/pajes.2017.78466

    Article  Google Scholar 

  40. Reddy A (2020) Review on different hardening models for computation of deep drawing process simulation. https://doi.org/10.31224/osf.io/4a28r

  41. Altan T, Tekkaya AE (2012) Sheet metal forming fundamentals. ASM International, Materials Park

    Book  Google Scholar 

  42. Bahloul R, Ben-Elechi S, Potiron A (2006) Optimisation of springback predicted by experimental and numerical approach by using response surface methodology. J Mater Process Technol 173(1):101–110. https://doi.org/10.1016/j.jmatprotec.2005.11.009

    Article  Google Scholar 

  43. Karaağaç İ (2017) The evaluation of process parameters on springback in V-bending using the flexforming process. Mater Res 20(5):1291–1299

    Article  Google Scholar 

  44. Karaağaç İ, Önel T, Uluer O (2020) The effects of local heating on springback behaviour in v bending of galvanized DP600 sheet. Ironmak Steelmak 47(7):807–813. https://doi.org/10.1080/03019233.2019.1615308

    Article  Google Scholar 

  45. Farsi MA, Arezoo B (2011) Bending force and spring-back in V-die-bending of perforated sheet-metal components. J Braz Soc Mech Sci Eng 33(1):45–51. https://doi.org/10.1590/S1678-58782011000100007

    Article  Google Scholar 

  46. Karaağaç İ (2017) The experimental investigation of springback in V-bending using the flexforming process. Arab J Sci Eng 42(5):1853–1864. https://doi.org/10.1007/s13369-016-2329-6

    Article  Google Scholar 

  47. Zong Y, Liu P, Guo B, Shan D (2015) Springback evaluation in hot v-bending of Ti-6Al-4V alloy sheets. Int J Adv Manuf Technol 76(1–4):577–585. https://doi.org/10.1007/s00170-014-6190-z

    Article  Google Scholar 

  48. Chen FK, Chiu KH (2005) Stamping formability of pure titanium sheets. J Mater Process Technol 170(1–2):181–186. https://doi.org/10.1016/j.jmatprotec.2005.05.004

    Article  Google Scholar 

  49. Yu JH, Lee CW (2021) Study on the time-dependent mechanical behavior and springback of magnesium alloy sheet (AZ31B) in warm conditions. Materials (Basel). https://doi.org/10.3390/ma14143856

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully thank Mert AYGEN and Ali Baran METE, who works in a NETFORM engineering firm, for their help in licensing the software of Simufact Forming V16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuri Şen.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şen, N., Civek, T. & Seçgin, Ö. Experimental, analytical and parametric evaluation of the springback behavior of MART1400 sheets. J Braz. Soc. Mech. Sci. Eng. 44, 451 (2022). https://doi.org/10.1007/s40430-022-03749-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03749-8

Keywords

Navigation