Skip to main content

Advertisement

Log in

Energy-absorbing capacity of natural hybrid fiber-epoxy composites under impact loading

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

The effect of fiber hybridization on the impact behavior of natural fiber reinforced composites has been investigated by testing the specimens under low velocity impact loading. Banana, jute, sisal fiber, and epoxy resin matrix are used to create the specimens. The impact test was carried out with the help of an Izod digital impact testing machine. The natural fiber and particle mixed epoxy composite specimens were also prepared for measuring the impact energy by employing cellulose-based particles such as ground nut shell powder and teak wood powder. The results of the tests demonstrate that the hybridization of jute, sisal and jute, sisal and banana fibers produces good impact energy and a high percentage of potential energy absorption capacity. Compared to the J-E, S-E composites, the jute/sisal fiber hybridization showed a 189.78% and 265.75% improvement in the impact energy, respectively. The hybridization of jute banana and sisal fiber reinforced epoxy composite showed an improvement in impact strength of 161.50%, 230.06%, and 104.91% over the J-E, B-E, and S-E composites, respectively. Infusion of ground nut shell powder had a favorable effect on sisal, banana, and jute fiber reinforced composites. The addition of teak wood powder reinforcement to sisal/banana and banana and jute increased the material's impact resistance. The finite element method is used to estimate the deformation, von-mises, normal, and shear stresses of the natural composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273

    Article  Google Scholar 

  2. Terzopoulou ZN, Papageorgiou GZ, Papadopoulou E, Athanassiadou E, Alexopoulou E, Bikiaris DN (2015) Green composites prepared from aliphatic polyesters and bast fibers. Ind Crops Prod 68:60–79. https://doi.org/10.1016/j.indcrop.2014.08.034

    Article  Google Scholar 

  3. Li Mi, Yunqiao Pu, Thomas VM, Yoo CG, Ozcan S, Deng Y, Nelson K, Ragauskas AJ (2020) Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos Part B Eng 200:108254. https://doi.org/10.1016/j.compositesb.2020.108254

    Article  Google Scholar 

  4. Dittenber DB, GangaRao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf 43(8):1419–1429. https://doi.org/10.1016/j.compositesa.2011.11.019

    Article  Google Scholar 

  5. Balaji A, Purushothaman R, Udhayasankar R et al (2020) Study on mechanical, thermal and morphological properties of banana fiber-reinforced epoxy composites. J Bio Tribo Corros 6:60. https://doi.org/10.1007/s40735-020-00357-8

    Article  Google Scholar 

  6. Gogna E, Kumar R, Sahoo AK, Panda A (2019) A Comprehensive review on jute fiber reinforced composites. In: Shanker Kripa, Shankar Ravi, Sindhwani Rahul (eds) Advances in industrial and production engineering: select proceedings of FLAME 2018. Springer Singapore, Singapore, pp 459–467. https://doi.org/10.1007/978-981-13-6412-9_45

    Chapter  Google Scholar 

  7. Rana AK, Jayachandran K (2000) Jute fiber for reinforced composites and its prospects. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 353(1):35–45. https://doi.org/10.1080/10587250008025646

    Article  Google Scholar 

  8. Ayrilmis N, Jarusombuti S, Fueangvivat V et al (2011) Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers Polym 12:919. https://doi.org/10.1007/s12221-011-0919-1

    Article  Google Scholar 

  9. Hamouda T (2021) Sustainable packaging from coir fibers. Biopolymers and biocomposites from agro-waste for packaging applications. Elsevier, pp 113–126. https://doi.org/10.1016/B978-0-12-819953-4.00006-9

    Chapter  Google Scholar 

  10. Ramzy A, Beermann D, Steuernagel L, Meiners D, Ziegmann G (2014) Developing a new generation of sisal composite fibres for use in industrial applications. Compos B Eng 66:287–298. https://doi.org/10.1016/j.compositesb.2014.05.016

    Article  Google Scholar 

  11. Kaewkuk S, Sutapun W, Jarukumjorn K (2013) Effects of interfacial modification and fiber content on physical properties of sisal fiber/polypropylene composites. Compos B Eng 45(1):544–549. https://doi.org/10.1016/j.compositesb.2012.07.036

    Article  Google Scholar 

  12. Rehman MM, Zeeshan M, Shaker K et al (2019) Effect of micro-crystalline cellulose particles on mechanical properties of alkaline treated jute fabric reinforced green epoxy composite. Cellulose 26:9057–9069. https://doi.org/10.1007/s10570-019-02679-4

    Article  Google Scholar 

  13. Saha A, Kumar S, Kumar A (2021) Influence of pineapple leaf particulate on mechanical, thermal and biodegradation characteristics of pineapple leaf fiber reinforced polymer composite. J Polym Res 28:66. https://doi.org/10.1007/s10965-021-02435-y

    Article  Google Scholar 

  14. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A Appl Sci Manuf 40(4):469–475

    Article  Google Scholar 

  15. Zaghloul MYM, Zaghloul MMY, Zaghloul MMY (2021) Developments in polyester composite materials–an in-depth review on natural fibres and nano fillers. Compos Struct 278:114698. https://doi.org/10.1016/j.compstruct.2021.114698

    Article  MATH  Google Scholar 

  16. Guna V, Ilangovan M, Rather MH, Giridharan BV, Prajwal B, Krishna KV, Reddy N (2020) Groundnut shell/rice husk agro-waste reinforced polypropylene hybrid biocomposites. J Build Eng 27:100991

    Article  Google Scholar 

  17. Usman MA, Momohjimoh I, Usman AO (2021) Characterization of groundnut shell powder as a potential reinforcement for biocomposites. Polym Renew Resour. https://doi.org/10.1177/20412479211008761

    Article  Google Scholar 

  18. Prabhakar MN, Shah AUR, Rao KC et al (2015) Mechanical and thermal properties of epoxy composites reinforced with waste peanut shell powder as a bio-filler. Fibers Polym 16:1119–1124. https://doi.org/10.1007/s12221-015-1119-1

    Article  Google Scholar 

  19. Sajith S, Arumugam V, Dhakal HN (2017) Comparison on mechanical properties of lignocellulosic flour epoxy composites prepared by using coconut shell, rice husk and teakwood as fillers. Polym Testing 58:60–69. https://doi.org/10.1016/j.polymertesting.2016.12.015

    Article  Google Scholar 

  20. Vignesh V, Balaji AN, Rabi BRM, Rajini N, Ayrilmis N, Karthikeyan MKV, Al-Lohedan HA (2021) Cellulosic fiber based hybrid composites: a comparative investigation into their structurally influencing mechanical properties. Constr Build Mater 271:121587

    Article  Google Scholar 

  21. Sajith S, Arumugam V, Dhakal HN (2017) Comparison on mechanical properties of lignocellulosic flour epoxy composites prepared by using coconut shell, rice husk and teakwood as fillers. Polym Test 58:60–69. https://doi.org/10.1016/j.polymertesting.2016.12.015

    Article  Google Scholar 

  22. Dinesh S, Kumaran P, Mohanamurugan S et al (2020) Influence of wood dust fillers on the mechanical, thermal, water absorption and biodegradation characteristics of jute fiber epoxy composites. J Polym Res 27:9. https://doi.org/10.1007/s10965-019-1975-2

    Article  Google Scholar 

  23. Lin JC, Chang LC, Nien MH, Ho HL (2006) Mechanical behavior of various nanoparticle flled composites at low-velocity impact. Compos Struct 74(1):30–36

    Article  Google Scholar 

  24. Pichandi S, Rana S, Parveen S, Fangueiro R (2018) A green approach of improving interface and performance of plant fibre composites using microcrystalline cellulose. Carbohydr Polym 197:137–146. https://doi.org/10.1016/j.carbpol.2018.05.074

    Article  Google Scholar 

  25. Raju GU, Kumarappa S (2011) Experimental study on mechanical properties of groundnut shell particle-reinforced epoxy composites. J Reinf Plast Compos 30(12):1029–1037. https://doi.org/10.1177/0731684411410761

    Article  Google Scholar 

  26. Cheung HY, Ho MP, Lau KT, Cardona F, Hui D (2009) Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos Part B Eng 40(7):655–663

    Article  Google Scholar 

  27. Usman MA, Momohjimoh I, Gimba ASB (2016) Effect of groundnut shell powder on the mechanical properties of recycled polyethylene and its biodegradability. J Miner Mater Charact Eng 4:228–240

    Google Scholar 

  28. Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B Eng 42(4):856–873. https://doi.org/10.1016/j.compositesb.2011.01.010

    Article  Google Scholar 

  29. Keerthiveettil Ramakrishnan S, Vijayananth K, Pudhupalayam Muthukutti G et al (2022) The effect of various composite and operating parameters in wear properties of epoxy-based natural fiber composites. J Mater Cycles Waste Manage 24:667–679. https://doi.org/10.1007/s10163-022-01357-1

    Article  Google Scholar 

  30. Ganesh S, Keerthiveettil Ramakrishnan S, Palani V, Sundaram M, Sankaranarayanan N, Ganesan SP (2022) Investigation on the mechanical properties of ramie/kenaf fibers under various parameters using GRA and TOPSIS methods. Polym Compos 43(1):130–143

    Article  Google Scholar 

  31. Sumesh KR, Kavimani V, Rajeshkumar G, Indran S, Saikrishnan G (2021) Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. J Mater Cycl Waste Manag 23(4):1277–1288

    Article  Google Scholar 

  32. Sumesh K, Kavimani V, Rajeshkumar G, Indran S, Khan A (2020) Mechanical, water absorption and wear characteristics of novel polymeric composites: impact of hybrid natural fibers and oil cake filler addition. J Ind Text. https://doi.org/10.1177/1528083720971344

    Article  Google Scholar 

  33. Sumesh KR, Saikrishnan G, Pandiyan P, Prabhu L, Gokulkumar S, Priya AK, Spatenka P, Krishna S (2021) The influence of different parameters in tribological characteristics of pineapple/sisal/TiO2 filler incorporation. J Ind Text. https://doi.org/10.1177/15280837211022614

    Article  Google Scholar 

  34. de FernandesMedeirosQueirozBanea H MD, KioshiKawasakiCavalcanti D, de Souza e Silva Neto J (2021) The effect of multiscale hybridization on the mechanical properties of natural fiber-reinforced composites. J Appl Polym Sci 138(41):51213

    Article  Google Scholar 

  35. Cavalcanti D, Banea M, Neto J, Lima R (2021) Comparative analysis of the mechanical and thermal properties of polyester and epoxy natural fibre-reinforced hybrid composites. J Compos Mater 55(12):1683–1692. https://doi.org/10.1177/0021998320976811

    Article  Google Scholar 

  36. Pickering KL, Sawpan MA, Jayaraman J, Fernyhough A (2011) Influence of loading rate, alkali fibre treatment and crystallinity on fracture toughness of random short hemp fibre reinforced polylactide bio-composites. Compos Part A Appl Sci Manuf 42(9):1148–1156

    Article  Google Scholar 

  37. Navaneethakrishnan S, Athijayamani A (2015) Analysis of the tensile properties of natural fiber and particulate reinforced polymer composites using a statistical approach. J Polym Eng 35(7):665–674

    Article  Google Scholar 

  38. Pani D, Mishra P (2019) “Study of mechanical properties of natural fiber reinforced hybrid polymer composites. Inter J Adv Mech Eng 9(1):1–6

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the All India Council for Technical Education (AICTE), India, for giving the financial grant to the first authors of this paper to procure the impact testing machine. 8-42/FDC/RPS (POLICY-l)/2019-20 is the file number.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Phani Prasanthi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: João Marciano Laredo dos Reis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasanthi, P.P., Srinag, T., Ram, N.R. et al. Energy-absorbing capacity of natural hybrid fiber-epoxy composites under impact loading. J Braz. Soc. Mech. Sci. Eng. 44, 236 (2022). https://doi.org/10.1007/s40430-022-03537-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03537-4

Keywords

Navigation