Skip to main content

Effect of Interfacial Bonding Characteristics on Impact Strength of Jute Fiber Reinforced Composites

  • Chapter
  • First Online:
Interfacial Bonding Characteristics in Natural Fiber Reinforced Polymer Composites

Part of the book series: Composites Science and Technology ((CST))

  • 84 Accesses

Abstract

Natural fiber-based composite materials have emerged applications in automotive, aerospace, and marine applications. For better mobility, light and strong material requirement led to the development new composites for automobiles and the aerospace industry. This study deals with different composite plates made of different layers of natural fiber (Jute) and resin (epoxy and hardener). The mechanical properties, such as the impact strength of the composites, were studied by introducing different fiber orientations. This chapter reported on gaining data from impact strength and wire mesh reinforcement. The impact strength variations for Charpy and Izod test methods were observed for 30, 40, 50, and 60% fiber volume fractions. The results show that the 60% addition of jute fiber loading improves impact strength by 175%. The impact strength of 45° oriented wire composite specimen depicts better interfacial bonding between the jute fiber and wire mesh than 90° oriented wire mesh composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramesh M, Palanikumar K, Hemachandra Reddy K (2016) Evaluation of mechanical and interfacial properties of sisal/jute/glass hybrid fiber reinforced polymer composites. Trans Indian Inst Met 69(10):1851–1859. https://doi.org/10.1007/s12666-016-0844-5

  2. Bhoopathi R, Ramesh M, Naveen Kumar M, Sanjay Balaji P, Sasikala G (2018) Studies on mechanical strengths of hemp-glass fibre reinforced epoxy composites. IOP Conf Ser Mater Sci Eng 402(1). https://doi.org/10.1088/1757-899X/402/1/012083

  3. Cerbu C (2015) Mechanical characterization of the flax/epoxy composite material. Procedia Technol 19:268–275. https://doi.org/10.1016/j.protcy.2015.02.039

    Article  Google Scholar 

  4. Di Landro L, Janszen G (2014) Composites with hemp reinforcement and bio-based epoxy matrix. Compos Part B Eng 67:220–226. https://doi.org/10.1016/j.compositesb.2014.07.021

    Article  CAS  Google Scholar 

  5. Shahzad A (2011) Hemp fiber and its composites—a review. J Compos Mater 46:973–986

    Article  Google Scholar 

  6. Davies GC, Bruce DM (1998) Effect of environmental relative humidity and damage on the tensile properties of flax and nettle fibers. Text Res J 827:337–344

    Google Scholar 

  7. Sathishkumar T, Naveen J, Navaneethakrishnan P et al (2016) Characterization of sisal/cotton fibre woven mat reinforced polymer hybrid composites. J Ind Text 47:429–452

    Article  Google Scholar 

  8. Sankar R et al (2014) Drilling of composite laminates- a review. J Basic Appl Eng Res 1(3), 19–24

    Google Scholar 

  9. Dong J, locquet A, Declercq NF, Citrin DS (2016) Polarization-resolved terahertz imaging of intra- and inter-laminar damages in hybrid fiber-reinforced composite laminate subject to low-velocity impact. Compos Part B Eng 92:167–74

    Google Scholar 

  10. Arulmurugan M, Prabu K., Rajamurugan G, selvakumar AS (2021) Viscoelastic behaviour of Aloe vera/Hemp/Flax sandwich laminate composite reinforced with BaSO4: dynamic mechanical analysis. J Indus Textiles 50(7):1040–1064.https://doi.org/10.1177/1528083719852312

  11. Vinson JR, Sierakowski RL (2004) The behavior of structures composed of composite materials. Kluwer

    Google Scholar 

  12. Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48(17):4907–4920

    Article  CAS  Google Scholar 

  13. Erden S (2017) Fiber technology for fiber-reinforced composites fiber reinforced composites, 51–79. https://doi.org/10.1016/B978-0-08-101871-2.00003-5

  14. Hesseler S, Stapleton SE, Appel L, Schöfer S, Manin B (2021) Modeling of reinforcement fibers and textiles. Adv Modeling Simul Textile Eng, 267–299

    Google Scholar 

  15. Sridhar MK, Basavarajappa G, Kasturi SG, Balasubramanian N (1982) Ind J Text Res 7:87

    Google Scholar 

  16. Aly-Hassan, Mohamed S (2015) Multifunctionality of polymer composites, a new perspective in multifunctional composite materials, 42–67.https://doi.org/10.1016/B978-0-323-26434-1.00002-7.

  17. Chand N (2008) Tribology of natural fiber polymer composites, natural fibers and their composites, 1–58.https://doi.org/10.1533/9781845695057.1

  18. Chand N (2008) Tribology of natural fiber polymer composites. Jute Reinforced Polymer Compos, 108–128. https://doi.org/10.1533/9781845695057.108

  19. Dhakal HN, Ismail SO, Lightweight composites, important properties and applications. Sustain Compos Lightweight Appl, pp53–119. https://doi.org/10.1016/B978-0-12-818316-8.00006-2

  20. Rana AK, Mandal A, Mitra BC, Jacobson R, Rowell R, Banerjee AN (1998), Short jute fiber-reinforced polypropylene composites: effect of compatibilizer. J Appl Polymer Sci. https://doi.org/10.1002/(SICI)1097-4628(19980711)69:2<329:AID-APP14>3.0.CO; 2-R

    Google Scholar 

  21. Prabu K, Rajamurugan G, Thirumurugan M (2021) Dynamic mechanical analysis of 304 wire mesh reinforced hybrid Jute fiber/epoxy composite. J Ind Text 51(4):540–558. https://doi.org/10.1177/1528083719883057

    Article  CAS  Google Scholar 

  22. Govindhasamy K, Arulmurugan S (2016) Mechanical characterization of jute fiber nanocomposite. Int J Emer Tech Comp Sci Elect (IJETCSE) 21(3). ISSN: 0976–1353

    Google Scholar 

  23. Tapan Kumar Patnaik SS (2018) Nayak development of silicon carbide reinforced jute epoxy composites: physical, mechanical and thermo-mechanical characterizations, silicon 10:137–145

    Google Scholar 

  24. Athith D, Sanjay M, Yashas Gowda T et al (2018) Effect of tungsten carbide on mechanical and tribological properties of jute/sisal/E-glass fabrics reinforced natural rubber/epoxy composites. J Ind Text 48(4):713–737

    Article  CAS  Google Scholar 

  25. Swain PTR, Biswas S (2014) Physical and mechanical behavior of Al2O3 filled jute fiber reinforced epoxy composites. Int. J. Cur. Engg. Tech 2:67–71

    Article  Google Scholar 

  26. Arshad Z et al (2020) Drop weight impact and tension-tension loading fatigue behaviour of jute/carbon fibers reinforced epoxy-based hybrid composites. Polymer. Korea 44(5):610–617

    Article  CAS  Google Scholar 

  27. Mahesh V, Joladarashi S, Kulkarni SM (2019) An experimental investigation on low-velocity impact response of novel jute/rubber flexible bio-composite. Compos Struct 225:111190

    Article  Google Scholar 

  28. Patil S, ReddyORCID Icon DM, Naveen J, Swamy SS, Vignesh P, Venkatachalam G (2022) Low-velocity impact and compression after impact properties of hemp and jute fiber reinforced epoxy composites, 12309–12324. Published online: 18 Apr 2022

    Google Scholar 

  29. Sabeel Ahmed K, Vijayarangan S, Kumar A, Low velocity impact damage characterization of woven jute—glass fabric reinforced isothalic polyester hybrid composites 26(10). https://doi.org/10.1177/07316844070794

  30. Pandian A, Hameed Sultan MT, Manikandan V, Marimuthu U, Kanagaraj AP, Khan T (2022) Effect of stacking sequence of glass and jute fiber reinforced polymer composites on their low velocity impact properties. J Compos Mater 56(16):2599–2608. https://doi.org/10.1177/00219983221101220

    Article  CAS  Google Scholar 

  31. Jasim MH, Al-Araji AMA, Al-Kasob BDH, Ranjbar M (2021) Analytical analysis of jute–epoxy beams subjected to low-velocity impact loading. Int J Struct Integrity 12(3):428–438. https://doi.org/10.1108/IJSI-04-2020-0037

    Article  Google Scholar 

  32. Dhakal HN, Arumugam V, Aswinraj A, Santulli C, Zhang ZY, Lopez-Arraiza A (2014) Influence of temperature and impact velocity on the impact response of jute/UP composites. Polym Testing 35:10–19

    Article  CAS  Google Scholar 

  33. Jusoh MSBM, Ahmad HABI, Yahya MYB (2017) Indentation and low velocity impact properties of woven E-glass hybridization with basalt, jute and flax toughened epoxy composites. 3rd International conference on power generation systems and renewable energy technologies (PGSRET), pp 164–168

    Google Scholar 

  34. Naveen J, Jayakrishna K, Sultan MTBH, Amir SMM (2020) Ballistic performance of natural fiber based soft and hard body armour- a mini review. Front Mater 7:608139

    Article  Google Scholar 

  35. Oberg EK, Dean J, Clyne TW (2015) Effect of inter-layer toughness in ballistic protection systems on absorption of projectile energy. Int J Impact Eng 76:75e82

    Google Scholar 

  36. Yang YF, Chen XG (2017) Investigation of energy absorption mechanisms in a soft armor panel under ballistic impact. Text Res J 87:2475e2486

    Google Scholar 

  37. Yang YF, Chen XG (2017) Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design. Compos Struct 164:1e9

    Google Scholar 

  38. Zohdi TI (2002) Modeling and simulation of progressive penetration of multilayered ballistic fabric shielding. Comput Mech 29:61e67

    Google Scholar 

  39. Joo K, Kang TJ (2008) Numerical analysis of energy absorption mechanism in multi-ply fabricimpacts. Text Res J 78:561e576

    Google Scholar 

  40. Wambua P, Vangrimde B, Lomov S, Verpoest I (2007) The response of natural fibre composites to ballistic impact by fragment simulating projectiles. Compos Struct 77:232e40. https://doi.org/10.1016/j.compstruct.2005.07.006

  41. Gowda TM, Naidu ACB, Rajput C (1999) Some mechanical properties of untreated jute fabric ereinforced polyester composite. Compos Part A Appl Sci Manuf 30:277e84

    Google Scholar 

  42. Shah AN, Lakkad SC (1981) Mechanical properties of jute-reinforced plastics. Fiber Sci Technol 15:41e6

    Google Scholar 

  43. Gopinath A, Senthil Kumar M, Elayaperumal A (2014) Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices. Procedia Eng 97:2052e63. https://doi.org/10.1016/j.proeng.2014.12.448

  44. Risby MS, Wong SV, Hamouda AMS, Khairul AR, Elsadig M (2008) Ballistic performance of coconut shell powder/twaron fabric against non-armour piercing projectiles. Def Sci J 58:248e63. https://doi.org/10.14429/dsj.58.1645

  45. Santos da Luza Fernanda, Edio Pereira Lima Juniora LHLL, Monteiroa SN (2015) Ballistic test of multilayered armor with intermediate epoxy composite reinforced with jute fabric. Mater Res 18:170e7. https://doi.org/10.1590/1516-1439.358914

  46. Tan VBC, Lim CT, Cheong CH (2003) Perforation of high-strength fabric by projectiles of different geometry. Int J Impact Eng 28:207e22. https://doi.org/10.1016/S0734-743X(02)00055-6

  47. Borvik T, Langseth M, Hopperstad OS, Malo KA (2001) Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses—Part I: experimental study. Int J Impact Eng 27:19e35. https://doi.org/10.1016/S0734-743X(01)00034-3

  48. Ferdous S, Sarwar Hossain Md (2017) Natural fibre composite (NFC): new gateway for jute, Kenaf and allied fibres in automobiles and infrastructure sector 5(3):35–42

    Google Scholar 

  49. Ben-Dor G, Dubinsky A, Elperin T (2005) Ballistic impact: recent advances in analytical modeling of plate penetration dynamicse a review. Appl Mech Rev. https://doi.org/10.1115/1.2048626

    Article  Google Scholar 

  50. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58(11):80–86

    Article  CAS  Google Scholar 

  51. Mohammed L, Ansari MNM, Pua G, Jawaid M, Saiful Islam M (2015) A review on natural fiber reinforced polymer composite and its applications, Volume 2015 Article ID 24394. https://doi.org/10.1155/2015/243947

  52. Krishnasamy P et al (2022) General practices to enhance bast fiber composite properties for state of art applications—a review 2022. Eng Res Express 4, 012002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rajamurugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajamurugan, G., Krishnasamy, P. (2024). Effect of Interfacial Bonding Characteristics on Impact Strength of Jute Fiber Reinforced Composites. In: Krishnasamy, S., Hemath Kumar, M., Parameswaranpillai, J., Mavinkere Rangappa, S., Siengchin, S. (eds) Interfacial Bonding Characteristics in Natural Fiber Reinforced Polymer Composites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-8327-8_7

Download citation

Publish with us

Policies and ethics