Skip to main content
Log in

Two-dimensional solution of functionally graded piezoelectric-layered beams

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This study presents an exact elasticity solution for the functionally graded piezoelectric beams subjected to sinusoidally distributed transverse electromechanical loads. The elasticity solution can reflect the symmetrical exponential variation of materials about the interface of perfectly bonded two layers. The effects of the material gradation, beam span length to thickness ratio, intensity of external mechanical/electrical loads, and material properties on the axial normal stresses, transverse normal stress, transverse shear stress, axial and vertical displacements, electric displacements, and electrical potential are comprehensively investigated. The proposed elasticity solution can be used for the verification/comparison purposes of numerical procedures as a reference procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Tang A-Y, Wu J-X, Li X-F, Lee KY (2014) Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams. Int J Mech Sci 89:1–11. https://doi.org/10.1016/j.ijmecsci.2014.08.017

    Article  Google Scholar 

  2. Tan D, Kemenov AK, Erturk A (2019) Nonlinearities in resonant dynamics of piezoelectric macro-fiber composite cantilevers. In: Active and Passive Smart Structures and Integrated Systems XIII. International Society for Optics and Photonics, p 109670I

  3. Çömez İ, Aribas UN, Kutlu A, Omurtag MH (2021) An Exact Elasticity Solution for Monoclinic Functionally Graded Beams. Arab J Sci Eng 46:5135–5155. https://doi.org/10.1007/s13369-021-05434-9

    Article  Google Scholar 

  4. Alibeigloo A (2016) Thermo elasticity solution of sandwich circular plate with functionally graded core using generalized differential quadrature method. Compos Struct 136:229–240. https://doi.org/10.1016/j.compstruct.2015.10.012

    Article  Google Scholar 

  5. Kulikov GM, Plotnikova SV, Carrera E (2018) A robust, four-node, quadrilateral element for stress analysis of functionally graded plates through higher-order theories. Mech Adv Mater Struct 25:1383–1402. https://doi.org/10.1080/15376494.2017.1288994

    Article  Google Scholar 

  6. Roshanbakhsh MZ, Tavakkoli SM, Navayi Neya B (2020) Free vibration of functionally graded thick circular plates: an exact and three-dimensional solution. Int J Mech Sci 188:105967. https://doi.org/10.1016/j.ijmecsci.2020.105967

    Article  Google Scholar 

  7. Dorduncu M (2020) Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory. Thin-Walled Struct 146:106468. https://doi.org/10.1016/j.tws.2019.106468

    Article  Google Scholar 

  8. Trabelsi S, Zghal S, Dammak F (2020) Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures. J Braz Soc Mech Sci Eng 42:233. https://doi.org/10.1007/s40430-020-02314-5

    Article  Google Scholar 

  9. Hadji L, Avcar M, Civalek Ö (2021) An analytical solution for the free vibration of FG nanoplates. J Braz Soc Mech Sci Eng 43:418. https://doi.org/10.1007/s40430-021-03134-x

    Article  Google Scholar 

  10. Sofiyev AH, Turan F, Zerin Z (2020) Large-amplitude vibration of functionally graded orthotropic double-curved shallow spherical and hyperbolic paraboloidal shells. Int J Press Vessels Pip 188:104235. https://doi.org/10.1016/j.ijpvp.2020.104235

    Article  Google Scholar 

  11. Monge JC, Mantari JL (2020) 3D elasticity numerical solution for the static behavior of FGM shells. Eng Struct 208:110159. https://doi.org/10.1016/j.engstruct.2019.110159

    Article  Google Scholar 

  12. Arefi M, Civalek O (2020) Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory. Arch Civ Mech Eng 20:22. https://doi.org/10.1007/s43452-020-00032-2

    Article  Google Scholar 

  13. Sofiyev AH, Dikmen F (2021) Buckling analysis of functionally graded shells under mixed boundary conditions subjected to uniform lateral pressure. J of Appl Comput Mech 7:345–354. https://doi.org/10.22055/jacm.2020.35564.2684

    Article  Google Scholar 

  14. Amirabadi H, Farhatnia F, Ӧmer C (2021) Frequency response of rotating two-directional functionally graded GPL-reinforced conical shells on elastic foundation. J Braz Soc Mech Sci Eng 43:349. https://doi.org/10.1007/s40430-021-03058-6

    Article  Google Scholar 

  15. Xie K, Chen M (2021) An analytical method for free vibrations of functionally graded cylindrical shells with arbitrary intermediate ring supports. J Braz Soc Mech Sci Eng 43:100. https://doi.org/10.1007/s40430-021-02829-5

    Article  Google Scholar 

  16. Lim CW, Yang Q, Lü CF (2009) Two-dimensional elasticity solutions for temperature-dependent in-plane vibration of FGM circular arches. Compos Struct 90:323–329. https://doi.org/10.1016/j.compstruct.2009.03.014

    Article  Google Scholar 

  17. Xin L, Dui G, Yang S, Zhang J (2014) An elasticity solution for functionally graded thick-walled tube subjected to internal pressure. Int J Mech Sci 89:344–349. https://doi.org/10.1016/j.ijmecsci.2014.08.028

    Article  Google Scholar 

  18. Çömez İ (2020) Contact mechanics of the functionally graded monoclinic layer. Eur J Mech A/Solids 83:104018. https://doi.org/10.1016/j.euromechsol.2020.104018

    Article  MathSciNet  MATH  Google Scholar 

  19. Dorduncu M, Apalak MK, Reddy JN (2019) Stress wave propagation in a functionally graded adhesive layer between two identical cylinders. J Adhes 95:1146–1181. https://doi.org/10.1080/00218464.2018.1509002

    Article  Google Scholar 

  20. Çömez İ (2019) Continuous and discontinuous contact problem of a functionally graded layer pressed by a rigid cylindrical punch. Eur J Mech A Solids 73:437–448. https://doi.org/10.1016/j.euromechsol.2018.10.009

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang W, Zhang H, Inman DJ et al (2019) Low reflection effect by 3D printed functionally graded acoustic black holes. J Sound Vib 450:96–108. https://doi.org/10.1016/j.jsv.2019.02.043

    Article  Google Scholar 

  22. Çömez I, El-Borgi S, Yildirim B (2020) Frictional receding contact problem of a functionally graded layer resting on a homogeneous coated half-plane. Arch Appl Mech 90:2113–2131. https://doi.org/10.1007/s00419-020-01712-4

    Article  Google Scholar 

  23. Wang BL, Noda N (2001) Design of a smart functionally graded thermopiezoelectric composite structure. Smart Mater Struct 10:189–193. https://doi.org/10.1088/0964-1726/10/2/303

    Article  Google Scholar 

  24. Zhifei S (2002) General solution of a density functionally gradient piezoelectric cantilever and its applications. Smart Mater Struct 11:122–129. https://doi.org/10.1088/0964-1726/11/1/314

    Article  Google Scholar 

  25. Tingting L, Zhifei S (2004) Bending behavior of functionally gradient piezoelectric cantilever. Ferroelectrics 308:43–51. https://doi.org/10.1080/00150190490508774

    Article  Google Scholar 

  26. Chen WQ, Yong Lee K, Ding HJ (2005) On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates. J Sound Vib 279:237–251. https://doi.org/10.1016/j.jsv.2003.10.033

    Article  Google Scholar 

  27. Pan E, Han F (2005) Exact solution for functionally graded and layered magneto-electro-elastic plates. Int J Eng Sci 43:321–339. https://doi.org/10.1016/j.ijengsci.2004.09.006

    Article  Google Scholar 

  28. Zhong Z, Shang ET (2005) Exact analysis of simply supported functionally graded piezothermoelectric plates. J Intell Mater Syst Struct 16:643–651. https://doi.org/10.1177/1045389X05050530

    Article  Google Scholar 

  29. Bhangale RK, Ganesan N (2006) Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates. Int J Solids Struct 43:3230–3253. https://doi.org/10.1016/j.ijsolstr.2005.05.030

    Article  MATH  Google Scholar 

  30. Zhong Z, Yu T (2006) Vibration of a simply supported functionally graded piezoelectric rectangular plate. Smart Mater Struct 15:1404–1412. https://doi.org/10.1088/0964-1726/15/5/029

    Article  Google Scholar 

  31. Dai HL, Fu YM, Yang JH (2007) Electromagnetoelastic behaviors of functionally graded piezoelectric solid cylinder and sphere. Acta Mech Sin 23:55–63. https://doi.org/10.1007/s10409-006-0047-0

    Article  MATH  Google Scholar 

  32. Xiang HJ, Shi ZF (2009) Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load. Eur J Mech A Solids 28:338–346. https://doi.org/10.1016/j.euromechsol.2008.06.007

    Article  MATH  Google Scholar 

  33. Wu C-P, Huang SE (2009) Three-dimensional solutions of functionally graded piezo-thermo-elastic shells and plates using a modified Pagano method. Comput Mater Continua 12:251–281

    Google Scholar 

  34. Akbari A (2021) Analytical solution of elastic–plastic stress for double-layer FGM spherical shell subjected to pressure and temperature load. J Braz Soc Mech Sci Eng 43:79. https://doi.org/10.1007/s40430-020-02780-x

    Article  Google Scholar 

  35. Sedighi MR, Shakeri M (2009) A three-dimensional elasticity solution of functionally graded piezoelectric cylindrical panels. Smart Mater Struct 18:055015. https://doi.org/10.1088/0964-1726/18/5/055015

    Article  Google Scholar 

  36. Ghorbanpour Arani A, Khoddami Maraghi Z, Mozdianfard MR, Shajari AR (2010) Thermo-piezo-magneto-mechanical stresses analysis of FGPM hollow rotating thin disk. Int J Mech Mater Des 6:341–349. https://doi.org/10.1007/s10999-010-9141-3

    Article  Google Scholar 

  37. Akbarzadeh AH, Babaei MH, Chen ZT (2011) Thermopiezoelectric analysis of a functionally graded piezoelectric medium. Int J Appl Mechanics 03:47–68. https://doi.org/10.1142/S1758825111000865

    Article  Google Scholar 

  38. Behjat B, Salehi M, Armin A et al (2011) Static and dynamic analysis of functionally graded piezoelectric plates under mechanical and electrical loading. Scientia Iranica 18:986–994. https://doi.org/10.1016/j.scient.2011.07.009

    Article  Google Scholar 

  39. Wu C-P, Jiang R-Y (2011) The 3D Coupled Analysis of FGPM Circular Hollow Sandwich Cylinders under Thermal Loads. J Intell Mater Syst Struct 22:691–712. https://doi.org/10.1177/1045389X11401451

    Article  Google Scholar 

  40. Arefi M, Rahimi GH, Khoshgoftar M (2012) Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field. Smart Struct Syst. https://doi.org/10.12989/sss.2012.9.5.427

    Article  Google Scholar 

  41. Arefi M (2014) A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution. Latin Am J Solids Struct 11:2073–2092. https://doi.org/10.1590/S1679-78252014001100009

    Article  Google Scholar 

  42. Arefi M, Khoshgoftar MJ (2014) Comprehensive piezo-thermo-elastic analysis of a thick hollow spherical shell. Smart Struct Syst 14:225–246

    Article  Google Scholar 

  43. Atrian A, Jafari Fesharaki J, Nourbakhsh SH (2015) Thermo-electromechanical behavior of functionally graded piezoelectric hollow cylinder under non-axisymmetric loads. Appl Math Mech-Engl Ed 36:939–954. https://doi.org/10.1007/s10483-015-1959-9

    Article  MathSciNet  MATH  Google Scholar 

  44. Yas MH, Moloudi N (2015) Three-dimensional free vibration analysis of multi-directional functionally graded piezoelectric annular plates on elastic foundations via state space based differential quadrature method. Appl Math Mech-Engl Ed 36:439–464. https://doi.org/10.1007/s10483-015-1923-9

    Article  MathSciNet  Google Scholar 

  45. Nourmohammadi H, Behjat B (2016) Design criteria for functionally graded piezoelectric plates under thermo-electro-mechanical loadings. J Intell Mater Syst Struct 27:2249–2260. https://doi.org/10.1177/1045389X15624803

    Article  Google Scholar 

  46. Dini A, Abolbashari MH (2016) Hygro-thermo-electro-elastic response of a functionally graded piezoelectric cylinder resting on an elastic foundation subjected to non-axisymmetric loads. Int J Press Vessels Pip 147:21–40. https://doi.org/10.1016/j.ijpvp.2016.09.005

    Article  Google Scholar 

  47. Ashoori AR, Sadough Vanini SA (2017) Vibration of circular functionally graded piezoelectric plates in pre-/postbuckled configurations of bifurcation/limit load buckling. Acta Mech 228:2945–2964. https://doi.org/10.1007/s00707-017-1857-9

    Article  MathSciNet  MATH  Google Scholar 

  48. Kulikov GM, Plotnikova SV (2017) Assessment of the sampling surfaces formulation for thermoelectroelastic analysis of layered and functionally graded piezoelectric shells. Mech Adv Mater Struct 24:392–409. https://doi.org/10.1080/15376494.2016.1191098

    Article  Google Scholar 

  49. Kulikov GM, Plotnikova SV (2017) An analytical approach to three-dimensional coupled thermoelectroelastic analysis of functionally graded piezoelectric plates. J Intell Mater Syst Struct 28:435–450. https://doi.org/10.1177/1045389X15588627

    Article  Google Scholar 

  50. Alibeigloo A (2018) Thermo elasticity solution of functionally graded, solid, circular, and annular plates integrated with piezoelectric layers using the differential quadrature method. Mech Adv Mater Struct 25:766–784. https://doi.org/10.1080/15376494.2017.1308585

    Article  Google Scholar 

  51. Ashida F, Morimoto T, Ozaki H (2018) Active cancellation of unsteady stress oscillation in a functionally graded piezoelectric thin plate subjected to impact loading. Eur J Mech A Solids 67:84–91. https://doi.org/10.1016/j.euromechsol.2017.08.016

    Article  MathSciNet  MATH  Google Scholar 

  52. Mao J-J, Zhang W (2019) Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces. Compos Struct 216:392–405. https://doi.org/10.1016/j.compstruct.2019.02.095

    Article  Google Scholar 

  53. Meng G, Wang L, Zhang Q et al (2019) Coupled thermal–electrical–mechanical inhomogeneous cell-based smoothed finite element method for transient responses of functionally graded piezoelectric structures to dynamic loadings. Int J Comput Methods 17:1950012. https://doi.org/10.1142/S0219876219500129

    Article  MathSciNet  MATH  Google Scholar 

  54. Zenkour AM, Hafed ZS (2020) Bending analysis of functionally graded piezoelectric plates via quasi-3D trigonometric theory. Mech Adv Mater Struct 27:1551–1562. https://doi.org/10.1080/15376494.2018.1516325

    Article  Google Scholar 

  55. Zhang P, Qi C, Sun X et al (2020) Bending behaviors of the in-plane bidirectional functionally graded piezoelectric material plates. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2020.1846100

    Article  Google Scholar 

  56. Meskini M, Ghasemi AR (2020) Electro-magnetic potential effects on free vibration of rotating circular cylindrical shells of functionally graded materials with laminated composite core and piezo electro-magnetic two face sheets. J Sandwich Struct Mater. https://doi.org/10.1177/1099636220909751

    Article  Google Scholar 

  57. Mohanty S, Kumbhar PY, Swaminathan N, Annabattula R (2020) A phase-field model for crack growth in electro-mechanically coupled functionally graded piezo ceramics. Smart Mater Struct 29:045005. https://doi.org/10.1088/1361-665X/ab7145

    Article  Google Scholar 

  58. Heydarpour Y, Malekzadeh P, Dimitri R, Tornabene F (2020) Thermoelastic analysis of functionally graded cylindrical panels with piezoelectric layers. Appl Sci 10:1397. https://doi.org/10.3390/app10041397

    Article  Google Scholar 

  59. Nourmohammadi H, Behjat B (2020) Static analysis of functionally graded piezoelectric plates under electro-thermo-mechanical loading using a meshfree method based on RPIM. J Stress Anal 4:93–106. https://doi.org/10.22084/jrstan.2020.20850.1125

    Article  Google Scholar 

  60. Parhizkar Yaghoobi M, Ghannad M (2020) Electro-elastic analysis of functionally graded piezoelectric variable thickness cylindrical shells using a first-order electric potential theory and perturbation technique. J Intell Mater Syst Struct 31:2044–2068. https://doi.org/10.1177/1045389X20935627

    Article  Google Scholar 

  61. Dini A, Shariati M, Zarghami F, Nematollahi MA (2020) Size-dependent analysis of a functionally graded piezoelectric micro-cylinder based on the strain gradient theory with the consideration of flexoelectric effect: plane strain problem. J Braz Soc Mech Sci Eng 42:410. https://doi.org/10.1007/s40430-020-02497-x

    Article  Google Scholar 

  62. Shi ZF, Chen Y (2004) Functionally graded piezoelectric cantilever beam under load. Arch Appl Mech 74:237–247. https://doi.org/10.1007/s00419-004-0346-5

    Article  MATH  Google Scholar 

  63. Lim CW, Chen WQ, Zeng QC (2007) Exact solution for thick, laminated piezoelectric beams. Mech Adv Mater Struct 14:81–87. https://doi.org/10.1080/15376490600675265

    Article  Google Scholar 

  64. Huang D, Ding H, Chen W (2007) Analytical solution for functionally graded anisotropic cantilever beam under thermal and uniformly distributed load. J Zhejiang Univ - Sci A 8:1351–1355. https://doi.org/10.1631/jzus.2007.A1351

    Article  MATH  Google Scholar 

  65. Huang DJ, Ding HJ, Chen WQ (2007) Piezoelasticity solutions for functionally graded piezoelectric beams. Smart Mater Struct 16:687. https://doi.org/10.1088/0964-1726/16/3/015

    Article  Google Scholar 

  66. Alibeigloo A (2010) Thermoelasticity analysis of functionally graded beam with integrated surface piezoelectric layers. Compos Struct 92:1535–1543. https://doi.org/10.1016/j.compstruct.2009.10.030

    Article  Google Scholar 

  67. Doroushi A, Akbarzadeh AH, Eslami MR (2010) Dynamic analysis of functionally graded piezoelectric material beam using the hybrid Fourier-Laplace transform method. American society of mechanical engineers digital collection, pp 475–483

  68. Pandey VB, Parashar SK (2016) Static bending and dynamic analysis of functionally graded piezoelectric beam subjected to electromechanical loads. Proc Inst Mech Eng C J Mech Eng Sci 230:3457–3469. https://doi.org/10.1177/0954406215596359

    Article  Google Scholar 

  69. Cai B, Zhou L (2019) A Coupling electromechanical inhomogeneous cell-based smoothed finite element method for dynamic analysis of functionally graded piezoelectric beams. Adv Mater Sci Eng 2019:e2812748. https://doi.org/10.1155/2019/2812748

    Article  Google Scholar 

  70. Aribas UN, Ermis M, Kutlu A et al (2020) Forced vibration analysis of composite-geometrically exact elliptical cone helices via mixed FEM. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2020.1824048

    Article  Google Scholar 

  71. Bi H, Wang B, Deng Z, Wang S (2020) Effects of thermo-magneto-electro nonlinearity characteristics on the stability of functionally graded piezoelectric beam. Appl Math Mech-Engl Ed 41:313–326. https://doi.org/10.1007/s10483-020-2570-9

    Article  MathSciNet  MATH  Google Scholar 

  72. Yaghoobi H, Fereidoon A (2010) Influence of neutral surface position on deflection of functionally graded beam under uniformly distributed load. World Appl Sci J 10:337–341

    Google Scholar 

  73. Chu L, Li Y, Dui G (2020) Nonlinear analysis of functionally graded flexoelectric nanoscale energy harvesters. Int J Mech Sci 167:105282. https://doi.org/10.1016/j.ijmecsci.2019.105282

    Article  Google Scholar 

  74. Ding J, Chu L, Xin L, Dui G (2018) Nonlinear vibration analysis of functionally graded beams considering the influences of the rotary inertia of the cross section and neutral surface position. Mech Based Des Struct Mach 46:225–237. https://doi.org/10.1080/15397734.2017.1329020

    Article  Google Scholar 

  75. Wang BBL, Han JC, Du SY et al (2008) Electromechanical behaviour of a finite piezoelectric layer under a flat punch. Int J Solids Struct 45:6384–6398. https://doi.org/10.1016/j.ijsolstr.2008.08.001

    Article  MATH  Google Scholar 

  76. Sankar BV (2001) An elasticity solution for functionally graded beams. Compos Sci Technol 61:689–696. https://doi.org/10.1016/S0266-3538(01)00007-0

    Article  Google Scholar 

  77. Giunta G, Belouettar S, Carrera E (2010) Analysis of FGM beams by means of classical and advanced theories. Mech Adv Mater Struct 17:622–635. https://doi.org/10.1080/15376494.2010.518930

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akif Kutlu.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Expressions of \(L_{1ji}\) \((j = 1,2,...6)\) appearing in Eq. (10) are given as follows:

$$ L_{11i} = 3\gamma_{i} /\beta $$
(A1)
$$ \begin{aligned} L_{12i} & = (e_{330i} ((2c_{440i} e_{310i} + 2c_{130i} (e_{150i} + e_{310i} ) - c_{110i} e_{330i} )\beta^{2} + 3c_{440i} e_{330i} \gamma_{i}^{2} ) \\ & - c_{330i} \beta^{2} ((e_{150i} + e_{310i} )^{2} + c_{440i} \in_{110i} ) + (c_{130i}^{2} + 2c_{130i} c_{440i} )\beta^{2} \in_{330i} \\ & + c_{330i} \beta^{2} ( - c_{110i} \beta^{2} + 3c_{440i} \gamma_{i}^{2} ) \in_{330i} )/(c_{440i} \beta^{2} (e_{330i}^{2} + c_{330i} \in_{330i} )) \\ \end{aligned} $$
(A2)
$$ \begin{aligned} L_{13i} & = (e_{330i} (2(2c_{440i} e_{310i} + 2c_{130i} (e_{150i} + e_{310i} ) - c_{110i} e_{330i} )\beta^{2} + 3c_{440i} e_{330i} \gamma_{i}^{2} ) \\ & - 2c_{330i} \beta^{2} ((e_{150i} + e_{310i} )^{2} + c_{440i} \in_{110i} ) + 2(c_{130i}^{2} + 2c_{130i} c_{440i} )\beta^{2} \in_{330i} \\ & + c_{330i} \beta^{2} ( - 2c_{110i} \beta^{2} + c_{440i} \gamma_{i}^{2} ) \in_{330i} )/(c_{440i} \beta^{2} (e_{330i}^{2} + c_{330i} \in_{330i} )) \\ \end{aligned} $$
(A3)
$$ \begin{aligned} L_{14i} & = - (\beta^{2} (c_{130i}^{2} {\kern 1pt} \in_{110i} {\kern 1pt} - c_{110i} (2e_{150i} e_{330i} + c_{330i} \in_{110i} ) \\ & + 2c_{130i} (e_{150i} (e_{150i} + e_{310i} ) + c_{440i} \in_{110i} ) - c_{440i} (c_{310i}^{2} {\kern 1pt} + c_{110i} \in_{330i} )) \\ & + \gamma_{i}^{2} ( - e_{330i} (3c_{130i} e_{150i} + 2c_{130i} e_{310i} + 3c_{440i} e_{310i} - c_{110i} e_{330i} ) \\ & - (c_{130i}^{2} + 3c_{130i} c_{440i} ) \in_{330i} + c_{330i} (e_{150i}^{2} + 3e_{150i} e_{310i} \\ & + e_{310i}^{2} + c_{440i} \in_{110i} + c_{110i} \in_{330i} ))/(c_{440} \xi^{2} (e_{330}^{2} + c_{330} \in_{330} )) \\ \end{aligned} $$
(A4)
$$ \begin{aligned} L_{15i} & = - \gamma_{i} (\beta^{2} (c_{130i}^{2} {\kern 1pt} \in_{110i} {\kern 1pt} - c_{110i} (2e_{150i} e_{330i} + c_{330i} \in_{110i} ) \\ & + 2c_{130i} (e_{150i} (e_{150i} + e_{310i} ) + c_{440i} \in_{110i} ) + \\ & - c_{440i} (e_{310i}^{2} + c_{110i} \in_{330i} ))(c_{110} + c_{440} ){\kern 1pt} \in_{330} ) \\ & + \gamma_{i}^{2} (c_{330i} e_{310i} e_{150i} - c_{440i} e_{310i} e_{330i} \\ & - c_{130i} (e_{150i} e_{330i} + c_{440i} \in_{330i} )))/(c_{440i} \beta^{2} (e_{330i}^{2} + c_{330i} \in_{330i} )) \\ \end{aligned} $$
(A5)
$$ \begin{aligned} L_{16i} & = ( - c_{110i} \beta^{2} (e_{150i}^{2} {\kern 1pt} + c_{440i} \in_{110i} ) \\ & - \gamma_{i}^{2} (c_{130i} (e_{150i}^{2} {\kern 1pt} + c_{440i} \in_{110i} ))) \\ & /(c_{440i} \beta^{2} (e_{330i}^{2} + c_{330i} \in_{330i} )). \\ \end{aligned} $$
(A6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çömez, İ., Aribas, U.N., Kutlu, A. et al. Two-dimensional solution of functionally graded piezoelectric-layered beams. J Braz. Soc. Mech. Sci. Eng. 44, 101 (2022). https://doi.org/10.1007/s40430-022-03414-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03414-0

Keywords

Navigation